Is dark matter the relic of the primordial matter that created the visible matter of the universe?

A.A. Grib1 and Yu.V. Pavlov2

Abstract

Quantum field theory in nonstationary curved Friedmann spacetime leads to the phenomenon of massive particles creation. The hypothesis that, at the end of inflation, gravitation creates from vacuum superheavy particles as some primordial matter decaying into quarks and leptons, leading to the observed baryonic charge, is investigated. Taking a complex scalar field for these particles, by analogy with K0 meson theory, one obtains two components, the long- and short-lived ones, so that the long-lived component, after breaking the Grand Unification symmetry, has a long lifetime and is observed today as dark matter. The hypothesis, that ultra-high energy cosmic rays occur as a manifestation of superheavy dark matter, is considered, and some experimental possibilities of the proposed scheme are analyzed. Some new results on nonconformal scalar particle creation are presented.

References

  1. A. A. Grib, S. G. Mamayev, and V. M. Mostepanenko, Vacuum Quantum Effects in Strong Fields (Friedmann Lab. Publ., St. Petersburg, 1994).
  2. A. A. Grib, Early Expanding Universe and Elementary Particles (Friedmann Lab. Publ., St. Petersburg, 1995).
  3. A. A. Grib and Yu. V. Pavlov, Int. J. Mod. Phys. D 11, 433 (2002); Int. J. Mod. Phys. A 17, 4435 (2002); Grav. & Cosmol. 8 Suppl., 148 (2002); Grav. & Cosmol. 12 159 (2006).
  4. A. O. Barvinsky, Physics - Uspekhi 48, 545 (2005).
  5. K. Greisen, Phys. Rev. Lett. 16 748 (1966); G. T. Zatsepin and V. A. Kuzmin, JETP Lett. 4 78 (1966).
  6. N. D. Birrell and P. C. W. Davies, Quantum Fields in Curved Space (Cambridge Univ. Press, Cambridge, 1982).
  7. A. A. Grib and S. G. Mamayev, Yadernaya Fizika 10, 1276 (1969) [Sov. J. Nucl. Phys. 10, 722 (1970)].
  8. S.A. Fulling, Gen. Rel. Grav. 10 807 (1979).
  9. Yu. V. Pavlov, Teor. Mat. Fiz. 126, 92 (2001).
  10. A. D. Linde, Particle Physics and Inflationary Cosmology (Harwood, Chur, Switzerland, 1990).
  11. Yu. V. Pavlov, Teor. Mat. Fiz. 140, 1095 (2004).
  12. L. P. Grishchuk and V. M. Yudin, J. Math. Phys. 21 1168 (1980).
  13. S.G. Mamayev, V.M. Mostepanenko, and A.A. Starobinsky, Sov. Phys. - JETP 43, 823 (1976).
  14. A. A. Grib and E. A. Poberii, Helv. Phys. Acta 68, 380 (1995).
  15. Ya. B. Zel'dovich and I. D. Novikov, The Structure and Evolution of the Universe (Nauka, Moscow, 1975).
  16. S. Weinberg, The First Three Minutes. A Modern View of the Origin of the Universe (Basic Books, New York, 1977).
  17. A. A. Grib and V. Yu. Dorofeev, Int. J. Mod. Phys. D 3, 731 (1994).
  18. V. A. Kuzmin and V. A. Rubakov, Physics of Atomic Nuclei 61, 1028 (1998).
  19. V. Berezinsky, M. Kachelriess, and A. Vilenkin, Phys. Rev. Lett. 79, 4302 (1997).
  20. V. Berezinsky, P. Blasi, and A. Vilenkin, Phys. Rev. D 58 103515 (1998).
  21. V. Kuzmin and I. Tkachev, Phys. Rev. D 59 123006 (1999).
  22. C.-H. Chou and K.-W. Ng, Phys. Lett. B 594 1 (2004).
  23. J. F. Navarro, C. S. Frenk, and S. D. M. White, Astroph. J. 462 563 (1996).
  24. H. V. Klapdor-Kleingrothaus and K. Zuber, Particle Astrophysics (Institute of Physics, Bristol, 1997).
  25. M. Gell-Mann, P. Ramond, and S. Slansky, in: Supergravity, ed. by P. van Niewenhuizen and D. Z. Freedman (North Holland, Amsterdam, 1979), pp. 315-321.
  26. R. Aloisio, V. Berezinsky, and M. Kachelriess, Phys. Rev. D 74 023516 (2006).
For more information about this paper please visit Springer's Home Page of this paper.



Back to The Contents Page