Particle production in an expanding universe dominated by dark energy fluid

A.B. Batista, J.C. Fabris and S.J.M. Houndjo1

Abstract

We investigate particle production in an expanding universe dominated by a perfect fluid with the equation of state p = ar. The rate of particle production, using the Bogoliubov coefficients, is determined exactly for any value of a in the case of a flat universe. When the strong energy condition is satisfied, the particle production rate decreases with time; the opposite occurs when the strong energy condition is violated. In the phantom case, the particle production rate diverges in a finite time for each mode represented by a wavenumber k. Nevertheless, the energy density associated with the produced particles tends to zero as the big rip is approached.

References

  1. N. D. Birrel and P. C. W. Davies, Quantum Fields in Curved Space, (Cambridge University Press, Cambridge, 1982).
  2. A. A. Grib, S. G. Mamayev, and V. M. Mostepanenko, Vacuum Quantum Effects in Strong Fields (Friedmann Laboratory Publishing, St. Petersburg, 1994).
  3. T. Jacobson, Introduction to quantum fields in curved spacetime and the Hawking effect, gr-qc/0308048.
  4. J. Martin, Inflationary perturbations: the cosmological Schwinger effect, arXiv:0704.3540.
  5. D. N. Spergel et al., Astrophys. J. Suppl. 170, 377 (2007).
  6. J-Ph. Uzan, The acceleration of the Universe and the physics behind it, astro-ph/0605313.
  7. L. H. Ford, in On the Nature of Dark Energy, edited by Ph. Brax, J. Martin and J-Ph. Uzan, (Frontier Group, Paris, 2002).
  8. R. Caldwell, Phys. Lett. B 545, 23 (2002).
  9. K. A. Bronnikov and J. C. Fabris, Phys. Rev. Lett. 96, 251101 (2006).
  10. P. H. Frampton and T. Takahashi, Phys. Lett. B 557, 135 (2003).
  11. M. Baldi, F. Finelli and S. Matarrese, Phys. Rev. D 72, 083504 (2005).
  12. J. C. Fabris and S. V. B. Goncalves, Phys. Rev. D 74, 027301 (2006).
  13. L. P. Grishchuk, Phys. Rev. D 48, 3513 (1993).
  14. C. Pathinayake and L. H. Ford, Phys. Rev. D 37, 2099 (1988).
  15. L. P. Grishchuk, Class. Quantum Grav. 10, 2449 (1993).
  16. J. Martin and R. H. Brandenberg, Phys. Rev. D 68, 063513 (2003).
  17. W. Unruh, Phys. Rev. D 51, 2827 (1995).
  18. Yu. V. Pavlov, Teor. Mat. Fiz. 126, 92 (2001).
  19. A. A. Grib and Yu. V. Pavlov, Grav. Cosmol. 8 Suppl. 1, 148 (2002).
  20. A. Guangui, J. Martin and M. Sakellariadou, Phys. Rev. D 66, 083502 (2002).
For more information about this paper please visit Springer's Home Page of this paper.



Back to The Contents Page