Casimir effect for two spheres in a wormhole spacetime

S.V. Sushkov1, A.R. Khabibullin2 and N.R. Khusnutdinov3

Abstract

We consider the Casimir effect for a static, spherically symmetric wormhole surrounded by two perfectly conducting spheres. We construct an expression for zero-point energy in this model. It is shown that the sign of the Casimir force depends on the nonminimal coupling constant x.

References

  1. H. B. G. Casimir, K. Ned. Akad., Wet. Proc. 51, 793 (1948).
  2. M. Bordag, M. U. Mohideen, and V. M. Mostepanenko, Phys. Rep. 353, 1 (2001).
  3. T. H. Boyer, Phys. Rev. 174, 1764 (1968).
  4. M. Bordag, E. Elizalde, K. Kirsten, and S. Leseduarte, Phys. Rev. A 56, 4896 (1997).
  5. V. V. Nesterenko, G. Lambiase, and G. Scarpetta, Int. J. Mod. Phys., A 17, 790 (2002).
  6. N. R. Khusnutdinov and S. V. Sushkov, Phys. Rev. D 65, 084028 (2002)
  7. A. R. Khabibullin, N. R. Khusnutdinov, and S. V. Sushkov, Gen. Rel. Grav., 23, 1 (2006).
  8. S. W. Hawking and G. F. R. Ellis, The Large Scale Structure of Space-Time (Cambridge University Press, Cambridge, London, 1973).
  9. M. Bordag and K. Kirsten, Phys. Rev. D 53, 5753 (1996)
  10. M. Bordag and D. V. Vassilevich, J. Phys. A 32, 8247 (1999).
  11. M. Bordag, K. Kirsten, and D. V. Vassilevich, Phys. Rev. D 59, 085011 (1999).
  12. P. B. Gilkey, K. Kirsten, and D. V. Vassilevich, Nucl. Phys. B 601, 125 (2001).
  13. K. A. Milton, J. Phys. A 37, 6391 (2004).
  14. M. Bordag, K. Kirsten, and D. M. Vassilevich, in: "The Casimir Effect 50 Years Later", p. 50 (1999)
  15. S. Minakshisundaram and A. Pleijel, Can. J. Phys. 1, 242 (1948).
  16. S. Minakshisundaram, J. Indian Math. Soc. 17, 158 (1953).
  17. N. R. Khusnutdinov and A. R. Khabibullin, Gen. Rel. Grav. 36, 37 (2004).
  18. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, (US National Bureau of Standards, Washington, 1964).
For more information about this paper please visit Springer's Home Page of this paper.



Back to The Contents Page