Cylindrically symmetric stationary solution to the Einstein equations for a superfluid

V.A. Popov1

Abstract

We present exact cylindrically symmetric solutions to the Einstein equations with a source in the form of a superfluid in which the normal component is at rest while the superfluid component is differentially rotating.

References

  1. G. L. Comer, D. Langlois, and L. M. Lin, Phys. Rev. D 61, 104025 (1999).
  2. L. Lindblom and G. Mendell, Phys. Rev. D 61, 104003 (2000).
  3. P. Haensel, K.P. Levenfish, and D.G. Yakovlev, Astron. Astrophys. 357, 1157 (2000); 372, 130 (2001).
  4. N. Andersson and G. L. Comer, Class. Quantum Grav. 18, 969 (2001); Phys. Rev. Lett. 87, 241101 (2001).
  5. N. A. Chernikov, Relativistic gas in the gravitational field (JINR Preprint 1027, Dubna, 1962).
  6. N. A. Chernikov, Equilibrium distribution of a relativistic gas (JINR Preprint 1159, Dubna, 1962).
  7. F. Douchin and P. Haensel, Astron. Astrophys. 380, 151 (2001).
  8. M. P. Silverman and R. L. Mallett, Class. Quantum Grav. 18, L37, L103 (2001).
  9. F. Ferrer and J. A. Grifols, JCAP 0412, 012 (2004).
  10. S. J. Putterman, Superfluid Hydrodynamics (American Elsevier Pub. Company, New York, 1974.)
  11. I. M. Khalatnikov and V. V. Lebedev, Phys. Lett. 91 A, 70 (1982); Zh. Eksp. Teor. Fiz. 83, 1601 (1982).
  12. B. Carter and I. M. Khalatnikov, Phys. Rev. D 45, 4536 (1992).
  13. B. Carter and D. Langlois, Phys. Rev. D 51, 5855 (1995).
  14. V. Popov, Gen. Relat. Gravit. 38, 917 (2006).
  15. Exact Solutions of Einstein's Field Equations, ed. E. Schmutzer et al. (Deutcher Verlag der Wissenschaften, Berlin, 1980.)
For more information about this paper please visit Springer's Home Page of this paper.



Back to The Contents Page