Constraining bouncing cosmology caused by the Casimir effect

Wlodzimierz Godlowski1, Marek Szydlowski2 and Zong-Hong Zhu3

Abstract

We constrain the Friedmann-Robertson-Walker (FRW) model with a "radiation-like" contribution to the Friedmann equation against the astronomical data. We analyze the observational bounds on a (1 + z)4 term from type Ia supernovae (SNIa) data, Fanaroff-Riley type IIb (FRIIb) radio galaxy (RG) data, baryon oscillation peak and cosmic microwave background radiation (CMBR) observations. We argue that it is not possible to determine the energy densities of individual components scaling like radiation from a kinematic astronomical test. The bounds for the density parameter of the total radiation-like term can be obtained. We find different interpretations of the presence of a scaling-like radiation term: the FRW universe filled with a massless scalar field in a quantum regime (the Casimir effect), the FRW model in a semiclassical approximation of loop quantum gravity, the FRW model in the Randall-Sundrum scenario with dark radiation or a cosmological model with global rotation. In this paper, we mainly concentrate on the Casimir effect arising from quantum effects of a scalar field. This contribution can describe a decaying part of the cosmological constant. We discuss the back-reaction of gravity on the Casimir-type force which is a manifestation of the vacuum fluctuations of the quantum scalar field at low temperature. It is shown that, while the Casimir energy gives rise to the accelerating Universe, the cosmological constant term is still required. We argue that a small negative contribution of a radiation-like term can reconcile the tension between the observed primordial 4He and D abundances. Moreover, the presence of such a contribution can also remove the disagreement between the Hubble parameter H0 values obtained from the SNIa and Wilkinson Microwave Anisotropy Probe (WMAP) satellite data.

References

  1. A. Riess et al., Astrophys. J. 607, 665 (2004).
  2. P. Astier, et al., Astron. Astrophys. 447, 31 (2006).
  3. S. Weinberg, Rev. Mod. Phys. 61, 1 (1989).
  4. R. Daly and S.G. Djorgovski, Astrophys. J. 612, 652 (2004).
  5. H. Casimir, Proc. K. Ned. Akad. Wet. 51, 793 (1948).
  6. T. Padmanabhan, Phys. Rep. 380, 335 (2003).
  7. S. M. Carrol, Living Reviews in Relativity 4, 1 (2001).
  8. V. Nesterenko, G. Lambiase and G. Scarpetta, Riv. Nuovo Cim. 27, 1 (2004).
  9. M. Bordag, V. Mohideen, and V. Mostepanenko, Phys. Rep. 353, 1 (2005).
  10. B. McInnes, hep-th/0607074.
  11. E. Fischbach and C. Talmadge, The search for Non-Newtonian Gravity (Springer-Verlag, New York, 1998).
  12. G. Bressi et al., Phys. Rev. Lett. 88, 4 (2002).
  13. L. H. Ford, Phys. Rev. D 14, 3304 (1976).
  14. Ya. B. Zel'dovich and A.A. Starobinsky, Sov. Astron. Lett. 10, 135 (1984).
  15. C. A. R. Herdeiro and M. Sampaio, Class. Quant. Grav. 23 473 (2006).
  16. M. Szydlowski, J. Szczesny, and M. Biesiada, Class. Quant. Grav. 4 1731 (1987).
  17. M. Lachieze-Rey, J.P. Luminet, Phys. Rep. C 254, 135 (1995).
  18. P.O. Mazur and A. Mottola, gr-qc/0405111.
  19. I. Antoniadis, P.O. Mazur, and A. Mottola, gr-qc/0612068.
  20. M. Ishak, astro-ph/0504416.
  21. R. Bean, S. Carroll, and M. Trodden, astro-ph/0510059.
  22. G. E. Volovik, gr-qc/0604062.
  23. M. B. Altaie and M. R. Setare, Phys. Rev. D 67 044018 (2003).
  24. A. A. Saharian and M. R. Setare, Phys. Lett. B 637 5 (2006).
  25. G. Mahajan, S. Sarkar, and T. Padmanabhan, astro-ph/0604265
  26. M. Szydlowski and J. Szczesny, Phys. Rev. D 38 3625 (1988).
  27. M. Szydlowski, J. Szczesny, and T. Stawicki, Class. Quant. Grav. 5 1097 (1988).
  28. M. Szydlowski, Acta Phys. Polon. B 20 671 (1989).
  29. K. Vandersloot, A. Ashtekar, P. and Singh, Phenomenological implications of discreteness in loop quantum cosmology, talk given at Loops'05, Potsdam, 10-14 October 2005; http://loops05.aei.mpg.de/index-files/abstract-vandersloot.html
  30. P. Singh and K. Vandersloot, Phys. Rev. D 72, 084004 (2005).
  31. X. Hossain, gr-qc/0504125
  32. L. Randall and R. Sundrum, Phys. Rev. Lett. 83, 3370 (1999).
  33. L. Randall and R. Sundrum, Phys. Rev. Lett. 83, 4690 (1999).
  34. N. Arkani-Hamed, S. Dimopoulos, and G. Dvali, Phys. Lett. B 429 263 (1998).
  35. R. Maartens, Phys. Rev. D 62, 084023 (2000).
  36. R.G. Vishwakarma, P. Singh, Class. Quantum Grav. 20, 2033 (2003).
  37. W. Godlowski, M. Szydlowski, Gen. Rel. Grav. 36 767 (2004).
  38. K. Ichiki et al., Phys. Rev. D 68, 083518 (2003).
  39. K. Ichiki, et al., Phys. Rev. D 66, 043521 (2002).
  40. J. Senovilla, F. Carlos, F. Souperta, and P. Szekeres, Gen. Rel. Grav. 30 389 (1988).
  41. O. Heckmann and E. Schucking, Handbuch der Physik, vol. LIII, ed. by S. Flugge (Springer-Verlag, Berlin, 1959), p.489.
  42. L.-X. Li, Gen. Rel. Grav. 30 497 (1998).
  43. W. Godlowski, M. Szydlowski, P. Flin, and M. Biernacka, Gen. Rel. Grav. 35 907 (2003).
  44. W. Godlowski, M. Szydlowski, and P. Flin, Gen. Rel. Grav. 37 615 (2005).
  45. B. Aryal and W. Saurer, Mont. Not. Roy. Ast. Soc. 366, 438 (2006).
  46. R. G. Vishwakarma, astro-ph/0404371.
  47. W. Godlowski and M. Szydlowski, Gen. Rel. Grav. 35 2171 (2003).
  48. A. Riess, et al., Astron. J. 116, 1009 (1998).
  49. R. Daly and S. G. Djorgovski, Astrophys. J. 597, 9 (2003).
  50. Z. H. Zhu and M. K. Fujimoto, Astrophys. J. 603, 365 (2004).
  51. M. Puetzfeld, M. Pohl, and Z.H. Zhu, Astrophys. J. 619, 657 (2005).
  52. W. Godlowski and M. Szydlowski, Phys. Lett. B 642 13 (2006).
  53. D. Eisenstein, et al. Astrophys. J. 633, 560 (2005).
  54. Y. Wang and M. Tegmark, Phys. Rev. Lett. 92, 241302 (2004).
  55. V. F. Cardone, C. Tortora, A. Troisi, and S. Capozziello, Phys. Rev. D 73, 043808 (2006).
  56. P. J. E. Peebles and B. Ratra, Rev. Mod. Phys. 75, 559 (2003).
  57. Burnham and Anderson [initials?] Model Selection and Multimodel Interference: A Practical Information-Theoretic Approach, 2nd ed. (Springer Verlag, New York, 2002).
  58. A. R. Liddle, Mon. Not. Roy. Astron. Soc. 351, L49 (2004).
  59. D. Parkinson, S. Tsujikawa, B. Basset, and L. Amendola, Phys. Rev. D 71 063524 (2005).
  60. H. Akaike, IEEE Trans. Auto. Control 19, 716 (1974).
  61. G. Schwarz, Annals of Statistics 6, 461 (1978).
  62. Y. Sakamoto, M. Ishiguro, and G. Katigawa, Akaike Information Criterion Statistics (Kluwer Academic Publishing, Dordrecht, 1986).
  63. H. Jeffreys, Theory of Probability, 3rd ed. (Oxford University Press, Oxford, 1961).
  64. S. Mukherjee, E. D. Feigelson, G. J. Babu, F. Murtagh, C. Fraley, and A. Raftery, Astrophys. J. 508, 314 (1998).
  65. W. Godlowski and M. Szydlowski, Phys. Lett. B 623 10 (2005).
  66. M. Szydlowski and W. Godlowski, Phys. Lett. B 633 427 (2006).
  67. M. Szydlowski and W. Godlowski, Phys. Lett. B 639 5 (2006).
  68. M. Szydlowski and A. Kurek, gr-qc/0608098.
  69. M. Szydlowski, A. Kurek, and A. Krawiec, Phys. Lett. B 642 171 (2006).
  70. C. Molina-Paris and M. Visser, Phys. Lett. B 455 90 (1999).
  71. B. K. Tippett and K. Lake, gr-qc/0409088.
  72. M. Szydlowski, W. Godlowski, A. Krawiec, and J. Golbiak, Phys. Rev. D 72 063504 (2005).
  73. D. N. Spergel, et al., Astrophys. J. Suppl. 148, 175 (2003).
  74. D. N. Spergel, et al., astro-ph/0603449.
  75. A. Riess, et al., astro-ph/06111572.
For more information about this paper please visit Springer's Home Page of this paper.



Back to The Contents Page