Slice energy in higher-order gravity theories and conformal transformations

Spiros Cotsakis1

Abstract

We study the generic transport of slice energy between the scalar field generated by the conformal transformation of higher-order gravity theories and the matter component. We give precise relations for this exchange in the cases of dust and perfect fluids. We show that, unless we are in a stationary spacetime where slice energy is always conserved, in non-stationary situations, contributions to the total slice energy depend on whether or not test matter follows geodesics in both frame representations of the dynamics, that is, on whether or not the two conformally related frames are physically indistinguishable.

References

  1. A. G. Reiss, et al., Astron. J. 116, 1009 (1998); S. Perlmutter, et al., Ap. J. 517, 565 (1999); C. B. Netterfield, et al., Ap. J. 571, 604 (2002); N. W. Halverson, et al., Ap. J. 568, 38 (2002); C. L. Bennett, et al., arXiv: astro-ph/0302207; J. L. Tonry, et al., Ap. J. 594 (2003) 1.
  2. S. Capozzielo, et al., arXiv: astro-ph/0303041; J. Miritzis, J. Math. Phys. 44, 3900 (2003); J. Miritzis, Class. Quant. Grav. 21 3043 (2004); S. M. Carroll, et al., Phys. Rev. D 70, 043528 (2004); D. N. Vollick, Phys. Rev. D 68 063510 (2003); S. Nojiri and S. D. Odintsov, Phys. Rev. D 68, 123512 (2003); S. Nojiri and S. D. Odintsov, Gen. Rel. Grav. 36, 1765 (2004); X. Meng and P. Wang, Class. Quant. Grav. 20 4949 (2003); A. D. Dolgov and M. Kawasaki, Phys. Lett. 573B, 1 (2003); M. E. Soussa and R. P. Woodard, Gen. Rel. Grav. 36 855 (2004); S. Nojiri and S. D. Odintsov, Gen. Rel. Grav. 36 1765 (2004); D. N. Vollick, Phys. Rev. D 69 064030 (2004); S. Nojiri, and S. D. Odintsov, Mod. Phys. Lett. A 19, 627 (2004); G. Allemandi, A. Borowiec, and M. Francaviglia, Phys. Rev. D 70 043524 (2004); J.-F. Dufaux et al., Phys. Rev. D70 083525 (2004); F. P. Schuller and M. N.R. Wohlfarth, Nucl. Phys. B 698 (2004); page?? M. Gasperini, Int. J. Mod. Phys. D 13, 2267 (2004); S. Nojiri, TSPU Vestnik 44, No. 7, 49 (2004); P. Wang, Gen. Rel. Grav. 38 517 (2006); M. C. B. Abdalla et al., Class. Quant. Grav. 22 L35 (2005); F. P. Schuller and M. N. R. Wohlfarth, Phys. Lett. 612B, 93 (2005); X. Meng and P. Wang, Class. Quant. Grav. 22 23 (2005); K. Maeda and N. Ohta, Phys. Rev. D 71 063520 (2005); V. V. Dyadichev et al., Phys. Rev. D 72 084021 (2005); J. Miritzis, J. Math. Phys. 46, 082502 (2005); T. Clifton and J. D. Barrow, Phys. Rev. D72 103005 (2005); J. D. Barrow and T. Clifton, Class. Quant. Grav. 23 L1 (2006); S. Nojiri and S. D. Odintsov, Phys. Lett. 631B, 1 (2005); S. Carloni et al., Class. Quant. Grav. 23 1913 (2006); J. A. Leach, et al., Class. Quant. Grav. 23 4915 (2006); T. Clifton and J. D. Barrow, Phys. Rev. D 72 123003 (2005); J. D. Barrow and S. Hervik, Phys. Rev. D73 023007 (2006); M. Bojowald and M. Kagan, Class. Quant. Grav. 23 4983 (2006); R. Catena, et al., arXiv: astro-ph/0604492v2; S. Capozzielo, et al., Phys. Lett. 639B, 135 (2006); L. Amendola, et al., Int. J. Mod. Phys. D 16, 1555 (2007); S. Tsujikawa, Annalen Phys. 15 302 (2006); D. Muller and S. D. P. Vitenti, Phys. Rev. D 74 083516 (2006); W. Fang, et al., arXiv: hep-th/0606032v4; J. D. Barrow and S. Hervik, Phys. Rev. D74 124017 (2006); T. Clifton and J. D. Barrow, Class. Quant. Grav. 23 2951 (2006); T. Faulkner, et al., arXiv: astro-ph/0612569; B. Li, et al., Phys. Rev. D 75 084010 (2007); J. Miritzis, arXiv: 0708.1396; S. Cotsakis and A. Tsokaros, Phys. Lett. B 651 341 (2007); N. Agarwal and R. Bean, arXiv: 0708.3967; C. G. Boehmer, et al., arXiv: 0709.0046v2.
  3. T. Chiba, Phys. Lett. B 575 1 (2003); E. E. Flanagan, Phys. Rev. Lett. 92, 071101 (2004); E. E. Flanagan, Class. Quant. Grav. 21 417 (2003); D. N. Vollick, Class. Quant. Grav. 21 3813 (2004); Xin-He Meng, P. Wang, Gen. Rel. Grav. 36 1947 (2004); E. E. Flanagan, Class. Quant. Grav. 21 3817 (2004); G. J. Olmo and W. Komp, arXiv: gr-qc/0403092; A. Nunez and S. Solganik, arXiv: hep-th/0403159; P. Wang, et al., Gen. Rel. Grav. 38 517 (2006); D. Vollick, Phys. Rev. D71 044020 (2005); X. Meng and P. Wang, Class. Quant. Grav. 22 23 (2005); C. H. Brans, arXiv:gr-qc/0506063; T.P. Sotiriou, Class. Quant. Grav. 23 5117 (2006); S. Deser and B. Tekin, Class. Quant. Grav. 23 7479 (2006); G. J. Olmo, Phys. Rev. Lett. 98 061101 (2007); G. J. Olmo, Phys. Rev. D 75 023511 (2007); G. Allemanti and M. Francaviglia, Int. J. Geom. Meth. Mod. Phys. 4, 1 (2007); S. Capozzielo et al., arXiv:0708.3038v2; A. Iglesias, et al., arXiv:0708.1163v2; N. Lanahan-Tremblay and V. Faraoni, arXiv: 0709.4414v2; D. Vollick, arXiv: 0710.1859v2; N. Deruelle et al., arXiv: 0711.1150; M. Salgado et al., arXiv:0801.2372.
  4. J. D. Barrow and S. Cotsakis, Phys. Lett. B 214 515 (1988); K. Maeda, Phys. Rev. D 39 3159 (1989).
  5. M. Gasperini, Int. J. Mod. Phys. D 13, 2267 (2004).
  6. J. D. Barrow and T. Clifton, Phys. Rev. D 73 103520 (2006).
  7. J. D. Barrow and T. Clifton, Phys. Rev. D 73 104022 (2006).
  8. Y. Choquet-Bruhat and C. DeWitt-Morette, Analysis, Manifolds and Physics, Part II, Revised and Enlarged Edition (North-Holland, 2000)
  9. A. Eddington, The Mathematical Theory of Relativity (Chelsea, 1923)
  10. R. M. Wald, General Relativity (Chicago University Press, 1984)
  11. S. Cotsakis, Phys. Rev. D 47 1437 (1993); Erratum: Phys. Rev. D 49 1145 (1994).
For more information about this paper please visit Springer's Home Page of this paper.



Back to The Contents Page