# Astronomical bounds on a future Big Freeze singularity

*Artyom V. Yurov*^{1}, Artyom V. Astashenok^{2}, Pedro F. Gonzalez-Diaz^{3}

(1) I. Kant Russian State University, Theoretical Physics Department, Al. Nevsky St. 14, Kaliningrad 236041, Russia

(2) I. Kant Russian State University, Theoretical Physics Department, Al. Nevsky St. 14, Kaliningrad 236041, Russia

(3) Colina de los Chopos, IMAFF, CSIC, Servano 121, Madrid 28006, Spain

### Abstract

It was recently found that dark energy in the form of phantom generalized Chaplygin gas may lead to a new form of a cosmic doomsday, the Big Freeze singularity. Like the Big Rip singularity, the Big Freeze singularity would also take place at finite future cosmic time, but, unlike the Big Rip, it happens for a finite scale factor. Our goal is to test if a universe filled with phantom generalized Chaplygin gas can conform to the data of astronomical observations. We shall see that if the universe is only filled with generalized phantom Chaplygin gas with the equation of state *p* = -*c*^{2}*s*^{2}/r^{a} with a < -1, then such a model cannot be matched to the observational data; generally speaking, such a universe has an infinite age. To construct more realistic models, one actually need to add dark matter. This procedure results in cosmological scenarios which do not contradict the values of universe age and expansion rate and allow one to estimate how long we are now from the future Big Freeze doomsday.

### References

- G. Felder, A. Frolov, L. Kofman and A. Linde, Phys. Rev. D 66 023507 (2002), hep-th/0202017.
- A. A. Starobinsky, Grav. Cosmol. 6, 157 (2000), astro-ph/9912054; R. R. Caldwell, Phys. Lett. B 545 23 (2002); R. R. Caldwell, M. Kamionkowski, and N.N. Weinberg, Phys. Rev. Lett. 91, 071301 (2003); P. F. Gonzalez-Diaz, Phys. Lett. B 586 1 (2004); Phys. Rev. D 69 063522 (2004); S. M. Carroll, M. Hoffman and M. Trodden, Phys. Rev. D 68 023509 (2003); S. Nojiri and S. D. Odintsov, Phys. Rev. D 70 103522 (2004).
- J. D. Barrow, Class. Quant. Grav. 21 L79-L82 (2004), gr-qc/0403084; J. D. Barrow, Class. Quant. Grav. 21 5619 (2004), gr-qc/0409062; J. D. Barrow and C. G. Tsagas, Class. Quant. Grav. 22 1563 (2005), gr-qc/0411045.
- D. N. Page, hep-th/0610079, hep-th/0612137.
- M. Bouhmadi-Lopez, P. F. Gonzalez-Diaz, and P. Martin-Moruno, gr-qc/0612135.
- S. Nojiri, S. D. Odintsov, and S. Tsujikawa, Phys. Rev. D 71 063004 (2005), hep-th/0501025.
- M. Bouhmadi-Lopez and J. A. Jimenez Madrid, JCAP 0505, 005 (2005), astro-ph/0404540.
- I. M. Khalatnikov, Phys. Lett. B 563 123 (2003).
- A. Yu. Kamenshchik, U. Moschella, and V. Pasquier, Phys. Lett. B 511 265 (2001), gr-qc/0103004; N. Bilic, G. B. Tupper, and R. D. Viollier, Phys. Lett. B 535 17 (2002), astro-ph/0111325; M. C. Bento, O. Bertolami, and A. A. Sen, Phys. Rev. D 66 043507 (2002), gr-qc/0202064.
- S. Cappoziello, S. Nojiri, and S. D. Odintsov, Phys. Lett. B 634 93 (2006), hep-th/0512118.

For more information about this paper please visit Springer's Home Page of this paper.

Back to The Contents Page