Electric S-brane solutions corresponding to rank-2 Lie algebras: Acceleration and small variation of G

V.D. Ivashchuk1, S.A. Kononogov2 and V.N. Melnikov3

Abstract

Electric S-brane solutions with two non-composite electric branes and a set of l scalar fields are considered. The intersection rules for branes correspond to Lie algebras A2, C2 and G2. The solutions contain five factor spaces. One of them, M0, is interpreted as our 3-dimensional space. It is shown that there exists a time interval where accelerated expansion of our 3-dimensional space is compatible with a small enough variation of the effective gravitational constant G(t). This interval contains t0, a point of minimum of the function G(t). A special solution with two phantom scalar fields is analyzed, and it is shown that, in the vicinity of the point t0, the time variation of G(t) (calculated in the linear approximation) decreases in the sequence of Lie algebras A2, C2 and G2.

References

  1. V. N. Melnikov, Multidimensional Classical and Quantum Cosmology and Gravitation. Exact Solutions and Variations of Constants. (CBPF-NF-051/93, Rio de Janeiro, 1993); V. N. Melnikov, in: Cosmology and Gravitation (ed. M. Novello, Editions Frontieres, Singapore, 1994), p. 147.
  2. V. N. Melnikov, Multidimensional Cosmology and Gravitation (CBPF-MO-002/95, Rio de Janeiro, 1995), 210 p.; V. N. Melnikov. In: Cosmology and Gravitation. II (ed. M. Novello, Editions Frontieres, Singapore, 1996), p. 465.
  3. V. N. Melnikov, Exact Solutions in Multidimensional Gravity and Cosmology III. (CBPF-MO-03/02, Rio de Janeiro, 2002), 297 pp.
  4. V. D. Ivashchuk and V. N. Melnikov, Nuovo Cim. B 102, 131 (1988).
  5. K. A. Bronnikov, V. D. Ivashchuk and V. N. Melnikov, Nuovo Cim. B 102, 209 (1988).
  6. V. N. Melnikov, Gravity as a Key Problem of the Millennium. (Proc. 2000 NASA/JPL Conference on Fundamental Physics in Microgravity, NASA Document D-21522, 2001, Solvang, CA, USA), p. 4.1-4.17.
  7. V. N. Melnikov. Gravity and cosmology as key problems of the millennium. In: Albert Einstein Century Int. Conf. (eds. J.-M. Alimi and A. Fuzfa, AIP Conf. Proc. Melville-NY, 2006), v. 861, p. 109-126.
  8. V. N. Melnikov, Variations of constants as a test of gravity, cosmology and unified models, Grav. Cosmol. 13, 81-100 (2007).
  9. V. D. Ivashchuk and V. N. Melnikov. Problems of G and multidimensional models. In: Proc. JGRG11, Eds. J. Koga et al., Waseda Univ., Tokyo, 2002, pp. 405-409.
  10. H. Dehnen, V. D. Ivashchuk, S.A. Kononogov and V. N. Melnikov, On time variation of G in multidimensional models with two curvatures, Grav. & Cosmol. 11 340 (2005).
  11. V. Baukh and A. Zhuk, Sp-brane accelerating cosmologies, Phys. Rev D 73, 104016 (2006).
  12. A. I. Zhuk, Conventional cosmology from multidimensional models, hep-th/0609126.
  13. J.-M. Alimi, V. D. Ivashchuk, S.A. Kononogov and V. N. Melnikov, Multidimensional cosmology with anisotropic fluid: acceleration and variation of G, Grav. Cosmol. 12, 173 (2006); gr-qc/0611015.
  14. V. D. Ivashchuk, S.A. Kononogov, V. N. Melnikov and M. Novello, Non-singular solutions in multidimensional cosmology with perfect fluid: acceleration and variation of G, Grav. Cosmol. 12, 273 (2006); hep-th/0610167.
  15. S. B. Fadeev and V. D. Ivashchuk, 5-dimensional solution with acceleration and small variation of G, In: Proc. of the Russian summer school-seminar Modern theoretical problems of gravitation and cosmology, September 9-16, 2007, TSHPU, Kazan-Yalchik, Russia, 4pp.; arXiv: 0706.3988.
  16. J.-M. Alimi, V. D. Ivashchuk and V. N. Melnikov, An S-brane solution with acceleration and small enough variation of G, Grav. & Cosmol. 13, No. 2 (50), 137-141 (2007); arXiv: 0711.3770.
  17. V. R. Gavrilov, V. D. Ivashchuk and V. N. Melnikov, Multidimensional integrable vacuum cosmology with two curvatures, Class. Quant. Grav. 13 3039-3056 (1996).
  18. A. G. Riess et al, Astron. J. 116, 1009 (1998).
  19. S. Perlmutter et al, Astroph. J. 517, 565 (1999).
  20. R. Hellings, Phys. Rev. Lett. 51, 1609 (1983).
  21. J. O. Dickey et al, Science 265, 482 (1994).
  22. V. D. Ivashchuk and V. N. Melnikov, Multidimensional classical and quantum cosmology with intersecting p-branes, J. Math. Phys. 39, 2866-2889 (1998); hep-th/9708157.
  23. V. D. Ivashchuk and V. N. Melnikov, Exact solutions in multidimensional gravity with antisymmetric forms, topical review, Class. Quant. Grav. 18 R82-R157 (2001); hep-th/0110274.
  24. V. D. Ivashchuk and V. N. Melnikov, Intersecting p-brane solutions in multidimensional gravity and M-theory, Grav. & Cosmol. 2 297 (1996); hep-th/9612089.
  25. V. D. Ivashchuk and V. N. Melnikov, Sigma-model for the generalized composite p-branes, Class. Quant. Grav. 14 3001-3029 (1997); Erratum: ibid., 15, 3941-4942 (1998); hep-th/9705036.
  26. I.S. Goncharenko, V. D. Ivashchuk and V. N. Melnikov, Fluxbrane and S-brane solutions with polynomials related to rank-2 Lie algebras, Grav. & Cosmol. 13 262-266 (2007); math-ph/0612079.
  27. V. D. Ivashchuk, Composite fluxbranes with general intersections, Class. Quant. Grav. 19 3033-3048 (2002); hep-th/0202022.
  28. V. D. Ivashchuk, Composite S-brane solutions related to Toda-type systems, Class. Quant. Grav. 20 261-276 (2003); hep-th/0208101.
For more information about this paper please visit Springer's Home Page of this paper.



Back to The Contents Page