Embeddings for 4D Einstein equations with a cosmological constant

J. Ponce de Leon1

Abstract

There are many ways of embedding a 4D spacetime in a given higher-dimensional manifold while satisfying the field equations. In this work, we extend and generalize a recent paper by Mashhoon and Wesson (Gen. Rel. Grav. 39, 1403 (2007)) by showing different ways of embedding a solution to the 4D Einstein equations in vacuum with a cosmological constant, in a Ricci-flat as well as anti-de Sitter 5D manifold. These embeddings lead to different physics in 4D, in particular, to non-equivalent cosmological terms as functions of the extra coordinate. We study the motion of test particles for different embeddings and show that there is a complete equivalence between several definitions of the effective mass of test particles measured in 4D, obtained from different theoretical approaches like the Hamilton-Jacobi formalism and the least action principle. For the case under consideration, we find that the effective mass observed in 4D is the same regardless of whether we consider null or non-null motion in 5D.

References

  1. S. Rippl, C. Romero, and R. Tavakol, Class. Quant. Grav. 12 2411 (1995); gr-qc/9511016.
  2. J. E. Lidsey, C. Romero, R. Tavakol, and S. Rippl, Class. Quant. Grav. 14 865 (1997); gr-qc/9907040.
  3. F. Dahia and C. Romero, J. Math. Phys. 43 5804 (2002); gr-qc/0109076.
  4. S. S. Seahra and P. S. Wesson, Class. Quant. Grav. 20 1321 (2003); gr-qc/0302015.
  5. P. S. Wesson, In Defense of Campbell's Theorem as a Frame for New Physics, gr-qc/0507107.
  6. J. Ponce de Leon, Class. Quant. Grav. 23 3043 (2006); gr-qc/0512067.
  7. C. Germani and R. Maartens, Phys. Rev. D 64 124010 (2001); hep-th/0107011.
  8. M. Bruni, C. Germani and R. Maartens, Phys. Rev. Lett. 87, 231302 (2001); gr-qc/0108013.
  9. G. Kofinas and E. Papantonopoulos, J. Cosmol. Astropart. Phys. 12, 11 (2004); gr-qc/0401047.
  10. N. Dadhich, R. Maartens, P. Papadopoulos and V. Rezania, Phys. Lett. B 487, 1 (2000); hep-th/0003061v3.
  11. R. Casadio, A. Fabbri and L. Mazzacurati, Phys. Rev. D 65, 084040 (2002); gr-qc/0111072v2.
  12. M. Visser and D. L. Wiltshire, Phys. Rev. D 67, 104004 (2003); hep-th/0212333v2.
  13. K. A. Bronnikov, H. Dehnen and V. N. Melnikov, Phys. Rev. D 68, 024025 (2003); gr-qc/0304068.
  14. J. Ponce de Leon, Grav. & Cosmol. 14 65 (2008); arXiv: 0711.0998.
  15. B. Mashhoon and P. Wesson, Gen. Rel. Grav. 39 1403 (2007); arXiv: 0705.0067.
  16. J. M. Overduin and P. S. Wesson, Phys. Rept. 283, 303 (1997); gr-qc/9805018.
  17. L. Randall and S. Sundrum, Phys. Rev. Lett. 83, 4690 (1999); hep-th/9906064.
  18. J. Ponce de Leon, Int. J. Mod. Phys. D 12, 757 (2003); gr-qc/0209013.
  19. J. Ponce de Leon, Gen. Rel. Grav. 36 1333 (2004); gr-qc/0310078.
  20. J. Ponce de Leon, The principle of least action for test particles in a four-dimensional spacetime embedded in 5D, arXiv: 0711.1004.
  21. J. M. Overduin, P. S. Wesson, and B. Mashhoon, Astron. Astrophys. 473, 727 (2007); arXiv:0707.3148.
  22. P. S. Wesson, Space-Time-Matter (World Scientific, 1999).
  23. B. Mashhoon, H. Liu and P. S. Wesson, Phys. Lett. B 331, 305 (1994).
  24. P. S. Wesson, J. Math. Phys. 43, 2423 (2002); gr-qc/0105059.
  25. B. Mashhoon and P. S. Wesson, Class. Quant. Grav. 21 3611 (2004); gr-qc/0401002.
  26. S. S. Seahra and P. S. Wesson, Gen. Rel. Grav. 33 1731 (2001); gr-qc/0105041.
  27. J. Ponce de Leon, Mod. Phys. Lett. A 16, 2291 (2001); gr-qc/0111011.
  28. T. Shiromizu, K. Maeda and M. Sasaki, Phys. Rev. D 62, 024012 (2000); gr-qc/9910076.
  29. H. V. Peiris, E. Komatsu, L. Verde, D. N. Spergel, C. L. Bennett, M. Halpern, G. Hinshaw, N. Jarosik, A. Kogut, M. Limon, S. Meyer, L. Page, G. S. Tucker, E. Wollack, and E. L. Wright, Astrophys. J. Suppl. 148, 213 (2003); astro-ph/0302225.
For more information about this paper please visit Springer's Home Page of this paper.



Back to The Contents Page