Spin light of the electron in dense matter

Alexander Grigoriev1, Sergey Shinkevich2, Alexander Studenikin3, Alexei Ternov4 and Ilya Trofimov5

Abstract

We derive the modified Dirac equation for an electron subject to Standard-Model interaction with nuclear matter. Exact solutions to this equation and the electron energy spectrum in matter are obtained. This establishes rather a powerful method of studying different processes which are possible when electrons propagate in background matter. On this basis, we study in detail the spin light of the electron (SLE) in nuclear matter, a new type of electromagnetic radiation which can be emitted by electrons moving in dense matter. It is expected that this introduced mechanism of electromagnetic radiation can have applications in astrophysics and cosmology (in particular, the SLE can be turned on when a relativistic electron penetrates into the dense matter of a neutron star). The developed theory of new mechanism of electromagnetic radiation by an electron in nuclear matter can be applied in a straightforward manner to the case of an electron propagating through a dense neutrino gas. The SLE in neutrino environment may take place during supernova explosions and gamma-ray bursts.

References

  1. W. Furry, Phys. Rev. 81, 115 (1951).
  2. A.A. Sokolov and I.M. Ternov, Synchrotron radiation (Pergamon press, Oxford, 1968).
  3. A. Studenikin and A. Ternov, Phys. Lett. 608. 107 (2005); hep-ph/041097, hep-ph/041096, hep-ph/0412408.
  4. A. Grigoriev et al., Phys. Lett. B 622, 199 (2005); Grav. Cosmol. 11, 132 (2005); hep-ph/0502231.
  5. A. Grigoriev et al., Phys. Atom. Nucl. 69, 1940 (2006).
  6. A. Studenikin, J. Phys. A 39, 6769 (2006); hep-ph/0511311.
  7. A. Grigoriev et al., Grav. Cosmol. 11, 132 (2005); hep-ph/0502231.
  8. A. Grigoriev et al., in: Particle Physics in the Year of 250th Anniversary of Moscow University, ed. A. Studenikin (World Scientific, Singapore, 2006), p.73, hep-ph/0611103.
  9. A. Studenikin, Ann. Fond. de Broglie 31, 2-3 (2006); hep-ph/0611100.
  10. A. Studenikin, in: Proc. 22nd Int. Conf. on Neutrino Physics and Astrophysics, hep-ph/0611104.
  11. A. Lobanov and A. Studenikin, Phys. Lett. B 564, 27 (2003); 601, 171 (2004); M. Dvornikov et al., Int. J. Mod. Phys. D 14, 309 (2005).
  12. A. Lobanov, Phys. Lett. B 619, 136 (2005); Dokl. Phys. 50, 286 (2005).
  13. A. Studenikin, Nucl. Phys. (Proc. Suppl.) B 143, 570 (2005).
  14. P. Mannheim, Phys. Rev. D 37, 1935 (1988).
  15. D. Notzold and G. Raffelt, Nucl. Phys. B 307, 924 (1988).
  16. J. Nieves, Phys. Rev. D 40, 866 (1989).
  17. L. Wolfenstein, Phys. Rev. D 17, 2369 (1978); S. Mikheyev and A. Smirnov, Sov. J. Nucl. Phys. 42, 913 (1985).
  18. L.N. Chang and R.K. Zia, Phys. Rev. D 38, 1669 (1988).
  19. J. Pantaleone, Phys. Lett. B 268, 227 (1991); Phys. Rev. D 46, 510 (1992); K. Kiers and N. Weiss, Phys. Rev. D 56, 5776 (1997); K. Kiers and M. Tytgat, Phys. Rev. D 57, 5970 (1998).
  20. Z. Berezhiani and M. Vysotsky, Phys. Lett. B 199, 281 (1987); Z. Berezhiani and A. Smirnov, Phys. Lett. B 220, 279 (1989); C. Giunti et al., Phys. Rev. D 45, 1557 (1992); Z. Berezhiani and A. Rossi, Phys. Lett. B 336, 439 (1994).
  21. V. Oraevsky et al., Phys. Lett. B 227, 255 (1989).
  22. W. Haxton and W.-M. Zhang, Phys. Rev. D 43, 2484 (1991).
  23. A. Loeb, Phys. Rev. Lett. 64, 115 (1990).
  24. M. Kachelriess, Phys. Lett. B 426, 89 (1998).
  25. A. Kusenko and M. Postma, Phys. Lett. B 545, 238 (2002).
  26. H. B. J. Koers, hep-ph/0409259.
  27. H. Bethe, Theory of Nuclear Matter (Palo Alto, California, 1971).
  28. I.M. Ternov, Sov. Phys. Usp. 38, 405 (1995); V.A. Bordovitsyn et al., Sov. Phys. Usp. 38, 1037 (1995).
  29. D. Colladay and V.A. Kostelecky, Phys. Rev. D 55, 6760 (1997); Phys. Rev. D 58, 11602 (1998).
  30. V.Ch. Zhukovsky et al., Phys. Rev. D 73, 065016 (2006).
For more information about this paper please visit Springer's Home Page of this paper.



Back to The Contents Page