Astrophysical effects of space-time foam

A.A. Kirillov and E.P. Savelova1

Abstract

During the quantum stage, the space-time had a foamlike structure. As the Universe cools down, the foam structure tempers and does not disappear, therefore the Friedmann model represents only an idealization. We show that local inhomogeneity of the foamy structure should be observed as a Dark Matter halo around point sources. Such a halo extends up to the scales where the foamy structure averages to homogeneity. We also show that scattering of photons from a point source on the foamlike structure gives rise to the origin of a diffuse component of radiation whose distribution traces that of DM.

References

  1. M. Persic, P. Salucci, F. Stel, MNRAS 281, 27 (1996).
  2. G. Gentile et al., MNRAS 351, 903 (2004); D. T. F. Weldrake, W. J. G. de Blok, F. Walter, MNRAS 340, 12 (2003); W. J. G. de Blok and A. Bosma, Astron. Astrophys. 385, 816 (2002).
  3. O. Gerhard, A. Kronawitter, R. P. Saglia, and R. Bender, Astroph. J. 121, 1936 (2001); A. Borriello, P. Salucci, and L. Danese, MNRAS 341, 1109 (2003).
  4. J. F. Navarro, C. S. Frenk, and S. D. M. White, Astroph. J. 462, 563 (1996); J. Diemand et.al., MNRAS 364, 665 (2005).
  5. J. R. Primack, Lectures at International School of Space Science, L'Aquila, Italy, August-September 2001; astro-ph/0112255.
  6. D. Clowe et al., Astrophys. J. Lett. 648, 109 (2006).
  7. A. Finzi, MNRAS 127, 21 (1963); J. E. Tohline, in: The Internal Kinematics and Dynamics of Galaxies, IAU Symp. 100 (ed. E Athanassoula, Dordrecht, Reidel, 1983), p. 205-206.
  8. M. Milgrom, Astroph. J. 270, 365 (1983); R. H. Sanders, ????. A136 L21-L23 (1984) Au: journal?; Astroph. J. 270, 371 (1983); 270, 384 (1983); J. D. Bekenstein and M. Milgrom, Astroph. J. 286, 7 (1984); J. D. Bekenstein, Phys. Rev. D 48, 3641 (1993); astro-ph/0412652; Contemp. Phys. 47, 387 (2006).
  9. J. R. Kuhn and L. Kruglyak, Astroph. J. 313 1-12 (1987); D. H. Eckhardt, Phys. Rev. D 48, 3762 (1993); D. Hadjimichef and F. Kokubun, Phys. Rev. D 55 733 (1997); I. T. Drummond, Phys. Rev. D 63 1 (2001); G. Dvali, G. Gabadadze and M. Shifman, Mod. Phys. Lett. A 16, 513 (2001).
  10. A. A. Kirillov, Phys. Lett. B 632, 453 (2006).
  11. J. A. Wheeler, in: Relativity, Groups, and Topology (ed. B.S. and C.M. DeWitt, Gordan and Breach, New York 1964).
  12. A. A. Kirillov and E. P. Savelova, Phys. Lett. B 660, 93 (2008).
  13. E. B. Gliner, Zh. Eksp. Teor. Fiz. 49, 542 (1965); A. H. Guth, Phys. Rev. D23, 347 (1981); A. D. Linde, Phys. Lett. B 108, 389 (1982).
  14. A. A. Kirillov, astro-ph/0702064; A. A. Kirillov and D. Turaev, Phys. Lett. B 656, 1 (2007).
  15. C.L. Sarazin, X-ray Emissions from Clusters of Galaxies (Cambridge University Press, 1988).
  16. A. A. Kirillov and D. Turaev, Phys. Lett. B 532, 185 (2002); A. A. Kirillov, Phys. Lett. B 555, 13 (2003); Sov. Phys. JETP 88 1051 (1999).
  17. F. J. Sanchez-Sesma et al., Wave Motion (2007), doi:10.1016/j.wavemoti.2007.07.005
  18. A. A. Kirillov and D. Turaev, MNRAS 371, L31 (2006).
  19. L. Pietronero, Physica A 144, 257 (1987); R. Ruffini, D.J. Song, and S. Taraglio, Astron. Astrophys. 190, 1 (1988); S. F. Labini, M. Montuori, and L. Pietronero, Phys. Rep. 293, 66 (1998).
  20. R. B. Tully and J. R. Fisher, Astron. Astrophys. 54, 661 (1977).
  21. A. G. Riess et al., Astron. J. 116, 1009 (1998); C. B. Netterfield et al., Astrophys. J. 571, 604 (2002).
  22. A. A. Kirillov and D. Turaev, Grav. Cosmol. 9, 267 (2003).
  23. M. Persic and P. Salucci, MNRAS 258, 14 (1992).
For more information about this paper please visit Springer's Home Page of this paper.



Back to The Contents Page