Geodesic portrait of de Sitter-Schwarzschild spacetime

Irina Dymnikova1, Anna Poszwa2 and Bozena Soltysek3

Abstract

De Sitter-Schwarzschild space-time is a globally regular spherically symmetric spacetime which is asymptotically de Sitter as r 0 and asymptotically Schwarzschild as r \ra . A source term in the Einstein equations smoothly connects de Sitter vacuum at the origin with Minkowski vacuum at infinity and corresponds to an anisotropic vacuum fluid defined by symmetry of its stress-energy tensor which is invariant under radial boosts. In the range of the mass parameter M Mcrit, de Sitter-Schwarzschild spacetime represents a vacuum nonsingular black hole, while M < Mcrit corresponds to a compact gravitationally bound vacuum object without horizons, called a G-lump. Masses of objects are related to both de Sitter vacuum trapped inside and to smooth breaking of the spacetime symmetry from the de Sitter group at the origin to the Poincaré group at infinity. We here present a geodesic survey of de Sitter-Schwarzschild spacetime.

References

  1. I. Dymnikova, Gen. Rel. Grav. 24, 235 (1992).
  2. I. G. Dymnikova, Int. J. Mod. Phys. D5, 529 (1996).
  3. A. D. Sakharov, Sov. Phys. JETP 22, 241 (1966).
  4. E. B. Gliner, Sov. Phys. JETP 22, 378 (1966).
  5. E. Poisson, W. Israel, Class. Quantum Grav. 5, L201 (1988).
  6. I. G. Dymnikova, Phys. Lett. B 472, 33 (2000).
  7. K. A. Bronnikov, A. Dobosz, and I. G. Dymnikova, Class. Quantum Grav. 20, 3797 (2003).
  8. L.D. Landau, E.M. Lifshitz, Classical Theory of Fields (Pergamon Press, 1975).
  9. I. Dymnikova, E. Galaktionov, Phys. Lett. B 645, 358 (2007).
  10. I. Dymnikova, in: Woprosy Matematicheskoj Fiziki i Prikladnoj Matematiki (Ed. E. Tropp, St. Petersburg, 2000), p. 29; gr-qc/0010016.
  11. I. Dymnikova, Grav. Cosmol. 8, Suppl., p. 131 (2002); gr-qc/0201058.
  12. I. Dymnikova, in: General Relativity, Cosmology and Gravitational Lensing (Eds. G. Marmo, C. Rubano, P. Scudellaro, Bibliopolis, Napoli, 2002), p. 95.
  13. I. Dymnikova, in: Beyond the Desert 2003 (Ed. H.V. Klapdor-Kleinhaus, Springer-Verlag, 2004), p. 485.
  14. I. Dymnikova, in: Beyond the Desert 2003 (Ed. H.V. Klapdor-Kleinhaus, Springer-Verlag, 2004), p. 521.
  15. I. Dymnikova, Class. Quantum Grav. 19, 725 (2002).
  16. I. Dymnikova, Int. J. Mod. Phys. D, 1015 (2003).
  17. I. Dymnikova, Class. Quantum Grav. 21, 4417 (2004).
  18. I. Dymnikova, A. Dobosz, M. Fil'chenkov, and A. Gromov, Phys. Lett. B506, 351 (2001).
  19. I. Dymnikova, B. Soltysek, Gen. Rel. Grav. 30, 1775 (1998); in: Particles, Fields and Gravitation (Ed. J. Rembielinsky, 1998), p. 460.
  20. I. Dymnikova and E. Galaktionov, Class. Quantum Grav. 22, 2331 (2005).
  21. I. Dymnikova, in: Internal Structure of Black Holes and Spacetime Singularities (Eds. L.M. Burko and A. Ori), Annals of the Israel Physical Society 13, 422 (1997).
  22. I. Dymnikova, Grav. Cosmol. 8, Suppl., 37 (2002).
  23. M. A. Markov, JETP Lett. 36, 265 (1982); Ann. Phys. 155, 333 (1984); M. R. Bernstein, Bull. Amer. Phys. Soc. 16, 1016 (1984); E. Farhi and A. Guth, Phys. Lett. B 183, 149 (1987); W. Shen, S. Zhu, Phys. Lett. A 126, 229 (1988); V. P. Frolov, M. A. Markov, and V. F. Mukhanov, Phys. Rev. D 41, 3831 (1990); D. Morgan, Phys. Rev. D 43, 3144 (1991); A. Strominger, Phys. Rev. D 46, 4396 (1992).
  24. P. O. Mazur and E. Mottola, gr-qc/0109035; gr-qc/0405111; Proc. Nat. Acad. Sci. 111, 9545 (2004).
  25. Ya. B. Zel'dovich and I. D. Novikov, Sov. Astron.J. 43, 758 (1966); S. W. Hawking, MNRAS 152, 75 (1971).
  26. C. G. Bohmer and T. Harko, Phys. Lett. B 630, 73 (2005).
  27. T. Padmanaghan, T.R. Choudhury, Phys. Rev. D 66, 081301 (2002); A. Arbey, astro-ph/0601274.
  28. S. De Silva, Geodesics for a Vacuum Nonsingular Black Hole, (California State University, Northridge, 1997)
  29. G. G. L. Nashed, Chaos Solitons and Fractals 15, 841 (2003); gr-qc/0301008.
  30. R. M. Wald, General Relativity (Univ. of Chicago Press, 1984).
  31. S. Chandrasekhar, The mathematical theory of black holes, (Clarendon Press, Oxford, 1983).
  32. R. J. Howes, Gen. Rel. Grav. 13, 829 (1981).
For more information about this paper please visit Springer's Home Page of this paper.



Back to The Contents Page