Spherically symmetric perturbations of spatially flat Friedmann models with imperfect fluid

R.K. Muharlyamov1

Abstract

A solution to the linearized Einstein equations is obtained for spherically symmetric perturbations of an imperfect fluid in a spatially flat Friedman model. The fluid density and pressure are assumed to be related by a linear equation of state. We consider perturbations with some spatial configuration which is nonsingular at the point r = 0. The instability problem for gravitational perturbations is studied, and solution are obtained depending on the functional form of the bulk and shear viscosity.

References

  1. E. Lifschitz, Zh. Eksp. Teor. Fiz. 16 587 (1946).
  2. E. M. Lifschitz and I. M. Khalatnikov, Adv. Phys. 12, 185 (1963).
  3. J. M. Bardeen, Phys. Rev. D 22, 1882 (1980).
  4. S. Good, Phys. Rev. D 39, 2882 (1989).
  5. G. Ellis and M. Bruni, Phys. Rev. D 40, 1804 (1989).
  6. G. Ellis, J. Hwang and M. Bruni, Phys. Rev. D 40, 1819 (1989).
  7. L. Goicoechea and J. Sanz, Phys. Rev. D 29, 607 (1984).
  8. M. Israelit and N. Rosen, Astrophys. J. 342, 627 (1989).
  9. M. Israelit and N. Rosen, Astrophys. J. 375, 463 (1991).
  10. M. Israelit, Astrophys. J. 375, 473 (1991).
  11. M. Israelit, B. Rose, an H. Dehnen, Gen. Rel. Grav. 27, 193 (1995).
  12. Yu. G. Ignat'ev and A.A. Popov, Astrophys. Space Sci. 163, 153 (1990).
  13. Yu. G. Ignat'ev and A. A. Popov, Phys. Lett. A 220, 22 (1996).
  14. W. Zimdahl, Phys. Rev. D 53, 5483 (1996).
  15. O. Santos, R. S. Dias and A. Banerjee, J. Math. Phys. 26, 878 (1985).
  16. G. C. McVittie, MNRAS 93, 325 (1933).
For more information about this paper please visit Springer's Home Page of this paper.



Back to The Contents Page