Space-time description of scalar particle creation by a homogeneous isotropic gravitational field

Yu.V. Pavlov1

Abstract

We give the generalization of the method of the space-time description of particle creation by a gravitational field for a scalar field with nonconformal coupling to the curvature. The space-time correlation function is obtained for a created pair of the quasi-particles, corresponding to a diagonal form of the instantaneous Hamiltonian. The case of an adiabatic change of the metric of homogeneous isotropic space is analyzed. We show that the created pairs of quasi-particles in de Sitter space should be interpreted as pairs of virtual particles.

References

  1. A. A. Grib, S. G. Mamayev, and V. M. Mostepanenko, Vacuum Quantum Effects in Strong Fields (Energoatomizdat, Moscow, 1988, in Russian; English translation: Friedmann Lab. Publ., St. Petersburg, 1994).
  2. N. D. Birrell and P. C. W. Davies, Quantum Fields in Curved Space (Cambridge Univ. Press, Cambridge, 1982).
  3. A. A. Grib and Yu. V. Pavlov, Int. J. Mod. Phys. D 11, 433 (2002); Int. J. Mod. Phys. A 17, 4435 (2002); Grav. & Cosmol. 12 159 (2006); Grav. & Cosmol. 14 1 (2008).
  4. A. A. Grib and S. G. Mamayev, Yadernaya Fizika 10, 1276 (1969); Sov. J. Nucl. Phys. 10, 722 (1970).
  5. S. G. Mamayev and N. N. Trunov, Yadernaya Fizika 37, 1603 (1983); Sov. J. Nucl. Phys. 37, 952 (1983).
  6. V. B. Bezerra, V. M. Mostepanenko, and C. Romero, Int. J. Mod. Phys. D 7, 249 (1998).
  7. M. Bordag, J. Lindig, V. M. Mostepanenko, and Yu. V. Pavlov, Int. J. Mod. Phys. D 6, 449 (1997).
  8. L. P. Grishchuk and V. M. Yudin, J. Math. Phys. 21, 1168 (1980).
  9. X. S. Mamaeva and N. N. Trunov, Teor. Mat. Fiz. 135, 82 (2003); Theor. Math. Phys. 135, 520 (2003).
  10. Yu.V. Pavlov, Teor. Mat. Fiz. 126, 115 (2001); Theor. Math. Phys. 126, 92 (2001)].
  11. S. A. Fulling, Gen. Rel. Grav. 10, 807 (1979).
  12. [Engl. transl.: Yu. V. Pavlov, Teor. Mat. Fiz. 140, 241 (2004); Theor. Math. Phys. 140, 1095 (2004)].
  13. C. Lanczos, Ann. Math. 39, 842 (1938).
  14. Yu. V. Pavlov, Int. J. Mod. Phys. A 17, 1041 (2002).
  15. T. D. Newton and E. P. Wigner, Rev. Mod. Phys. 21, 400 (1949).
  16. S. S. Schweber, An Introduction to Relativistic Quantum Field Theory (Row, Peterson and Co, New York, 1961).
For more information about this paper please visit Springer's Home Page of this paper.



Back to The Contents Page