On a possible alignment of elementary spin vectors in astronomical bodies

A. Dinculescu1


Under the hypothesis that astronomical bodies tend to align the spin vectors of their internal magnetic dipoles parallel to the rotation axis in order to increase the entropy by decreasing the rotational energy, we derived the magnetic fields of the known magnetic bodies in the Solar system. The calculated values, which span over 17 orders of magnitude, agree fairly well with the measured ones, despite the fact that elementary dipoles responsible for the magnetic fields that predominate in terrestrial bodies differ from those predominant in the Jovian planets, and both types differ from those predominant in the Sun.


  1. W. Sutherland, Terrestrial Magnetism and Atmospheric Electricity 8, 49-52 (1903).
  2. A. Schuster, Proc. Phys. Soc. London 24, 121-137 (1912).
  3. H. A. Wilson, Proc. Roy. Soc. A 104, 451-455 (1923).
  4. P. M. S. Blackett, Nature 159, 658-666 (1947).
  5. C. N. Arge, D. J. Mullan and A. Z. Dolginov, Astrophys. J. 443, 795-803 (1995).
  6. S. Baliunas, D. Sokoloff and W. Soon, Astrophys. J. 457, L99-L102 (1996).
  7. W. Weyl, Ann. Phys. 59, 101-133 (1919).
  8. M. M. Abdil'din, Izvestia Akad. Nauk Kazakh. SSR, Series Fiz. Mat. 4, 76-82 (1968).
  9. S. P. Sirag, Nature 278, 535-538 (1979).
  10. M. M. Abdil'din, Grav. Cosmol. 5, 219-221 (1999).
  11. W. F. G. Swann and A. Longacre, J. Franklin Inst. 206, 421-434 (1928).
  12. H. K. Moffatt, Magnetic Field Generation in Electrically Conducting Fluids, Cambridge University Press, London, 1978.
  13. T. G. Cowling, Mon. Not. R. Astr. Soc. 94, 39-48 (1934).
  14. V. N. Zharkov, Interior Structure of the Earth and Planets, Harwood Academic Publishers, London, 1986, p. 300.
  15. D. J. Stevenson, Earth and Planetary Science Letters 208, 1-11 (2003).
  16. J. E. P. Connerney and N. F. Ness, in: Mercury, ed. F. Vilas et al. (University of Arizona Press, Tucson, Arizona, 1988).
  17. S. J. Barnett, Physica 13, 241-268 (1933).
  18. T. Rikitake, Electromagnetism and the Earth's Interior, Elsevier, Amsterdam, 1966.
  19. W. B. Hubbard, Planetary Interiors, Van Nostrand Reinhold, New York, 1984, p. 79.
  20. M. D. Smith and P. J. Gierasch, Icarus 116, 159-179 (1995).
  21. P. Irwin, Giant Planets of our Solar System, Springer, Chichester, 2003, pp. 73-75.
  22. E. D. Miner, Uranus, John Wiley and Sons, Chichester, 1998.
  23. E. D. Miner, Neptune, Springer, Chichester, 2002.
  24. N. Grevesse and A. J. Sauval, in: Encyclopedia of Astronomy and Astrophysics, ed. by P. Murdin (IOP Publishing Ltd., Bristol, Philadelphia, 2005).
  25. J. S. Lewis, Physics and Chemistry of the Solar System, Springer, Chichester, 2003.
  26. G. Schubert, M. N. Ross, D. J. Stevenson and T. Spohn, 'in: Mercury, ed. Vilas et al. (University of Arizona Press, Tucson, Arizona, 1988).
  27. F. Sohl, T. Spohn, D. Breuer and K. Nagel, Icarus 157, 104-119 (2002).
  28. Ye Shi-hui, Magnetic Fields of Celastial Bodies, Kluwer Academic, Dordrecht, 1994.
  29. C. Constable and M. Korte, Earth and Planetary Science Letters 246, 1-16 (2006).
  30. C. T. Russell, Outer planet magnetospheres: a tutorial, Advances in Space Research 33, 2004-2020 (2003).
  31. G. R. Sarson and C. A. Jones, Science 276, 1106-1108 (1997).
  32. M. G. Kivelson, et al., Science 261, 331-334 (1993).
For more information about this paper please visit Springer's Home Page of this paper.

Back to The Contents Page