Bianchi Type I magnetized tilted imperfect barotropic fluid cosmological models in general relativity

Raj Bali and Pramila Kumawat1

Abstract

Bianchi Type I tilted cosmological models in the presence of an imperfect barotropic fluid and a magnetic field are investigated. We have assumed that the current is flowing along the x direction, so that the magnetic field is in the (yz) plane. Maxwell's equations F[ij;k] = 0 and F;jij = 0 are satisfied by F23 = const. A cosmological model in the absence of a magnetic field is discussed as a special case. The physical and geometric aspects of the models with singularities in these models are also discussed. The cosmological models so obtained represent tilted models with heat conduction in the presence or absence of a magnetic field. In the absence of a magnetic field, a non-tilted model with heat conduction is obtained.

References

  1. E. Asseo and H. Sol, Phys. Rep. 148 (1987).
  2. K. A. Bronnikov, E. N. Chudayeva, and G. N. Shikin, Class. Quant. Grav. 21 3389 (2004).
  3. A. K. Raychaudhuri and A.K. Datta, J. Math. Phys. 15 1977 (1974).
  4. L. P. Hughston and K. C. Jacobs, Astroph. J. 160 147 (1970).
  5. K. S. Thorne, Astroph. J. 148 51 (1967).
  6. C. B. Collins, Comm. Math. Phys. 27, 37 (1972).
  7. J. P. Vaijk and P. G. Eltgroth, J. Math. Phys. 11 2212 (1970).
  8. K. C. Jacobs, Astroph. J. 153 661 (1968).
  9. S. R. Roy and S. Prakash, Ind. J. Phys. B 52, 1, 47 (1978).
  10. I. Dami ao Soares and M. J. D. Assad, Phys. Lett. 66, 359 (1978).
  11. K. A. Dunn and B. O. J. Tupper, Astroph. J. 204 312 (year?)
  12. K. A. Dunn and B. O. J. Tupper, Astroph. J. 235 307 (1980).
  13. D. Lorentz, Phys. Rev. D 22 1848 (1980).
  14. D. Lorentz, Gen. Rel. Grav. 13 8, 7956 (1981).
  15. A. Banerjee and A. K. Sanyal, Gen. Rel. Grav. 18 1251 (1986).
  16. S. R. Roy and J. P. Singh, Austr. J. Phys. 38, 763 (1985).
  17. R. Bali, Int. J. Theor. Phys. 25, 7 (1986).
  18. M. B. Ribeiro and A. K. Sanyal, J. Math. Phys. 28 657 (1989).
  19. B. K. Nayak and G. B. Bhuyan, Gen. Rel. Grav. 19 939 (1987).
  20. R. Bali and A. Tyagi, Int. J. Theor. Phys. 27, 627 (1988).
  21. A. K. Raychaudhuri, Prog. Math., B.H.U., India, 23, 43 (1989).
  22. R. Bali and V.C. Jain, Astroph. Space Sci. 262, 145 (1999).
  23. R. Bali and S. Jain, Astroph. Space Sci. 311, 401 (2007).
  24. G. F. R. Ellis and A. R. King, Comm. Math. Phys. 38, 119 (1974).
  25. C. B. Collins and G. F. R. Ellis, Phys. Rep. 56, 65 (1979).
  26. J. M. Bradley and A. K. Sviestins, Gen. Rel. Grav. 16 1119 (1984).
  27. M. Novello and M. J. Reboucas, Astroph. J. 225 719 (1978).
  28. D. Ray, J. Math. Phys. 21 2797 (1980).
  29. S. R. Roy and S. K. Banerjee, Class. Quant. Grav. 14 2845 (1997).
  30. A. A. Coley, Gen. Rel. Grav. 22 3 (1990).
  31. A. A. Coley and B. O. J. Tupper, Astroph. J. 280 26 (1984).
  32. Y. Deng, Gen. Rel. Grav. 21 503 (1989).
  33. A. R. King and G. F. R. Ellis, Comm. Math. Phys. 38, 119 (1973).
  34. D. Lorentz, Astroph. Space Sci. 83, 63 (1982).
  35. D. Lorentz, Astroph. Space Sci. 85, 63 (1982).
  36. R. Bali and K. Sharma, Astroph. Space Sci. 283, 11 (2003).
  37. G. F. R. Ellis, in: General Relativity and Cosmology, ed. R. K. Sachs (Academic Press, New York, 1971), p. 116.
  38. A. Lichnerowicz, Relativistic Hydrodynamics and Magnetohydrodynamics, (Benjamin, New York, 1967).
  39. R. Maartens, Pramana - J. Phys. 55, 576 (2000).
  40. M. A. H. MacCallum, Comm. Math. Phys. 20, 57 (1971).
  41. G. F. R. Ellis, in: General Relativity and Cosmology, ed. by R. K. Sachs (Academic Press, New York, 1971), p. 117.
For more information about this paper please visit Springer's Home Page of this paper.



Back to The Contents Page