Status of the experiments on measurement of the Newtonian gravitational constant

V.K. Milyukov1, Jun Luo2, Chen Tao3, A.P. Mironov4

Abstract

Due to the weakness of gravity, the accuracy of the Newtonian gravitational constant G is essentially below the accuracy of other fundamental constants. The current value of G, recommended by CODATA in 2006, based on all results available at the end of 2006, is G = (6.67428 0.00067) ×10-11 m3kg-1s-2 with a relative error of 100 ppm. The accuracy of the best experimental results is 15-40 ppm, although the scatter of the results is large enough. Therefore new experiments at a level of accuracy of 10-30 ppm are rather topical. One of the problems of improving accuracy of G is a precision measurement of the period of eigen oscillations of a torsion balance. The nonlinear behavior of the torsion balance with five degrees of freedom has been studied. It was shown that swing modes are excited by the acting environmental noise. A coupling of the swing modes to the torsional mode has been revealed. Methods of suppressing the effect of mode couplings have been considered.

References

  1. P. R. Heyl, A redetermination of the constant of gravitation, J. Res. Natl. Bur. Stand. 5 (256), 1243-1290 (1930).
  2. C. Pontikis, Determination de la constante de gravitation par la methode de resonance, C. R. Acad. Sci. Ser. B 274, 437-440 (1972).
  3. M. U. Sagitov, V. K. Milyukov et al. A new determination of the Cavendish gravitational constant, Dokl. Akad. Nauk SSSR 245 (3), 567-569 (1979) [Sov. Phys. Dokl. 245 (1-6), 20-22 (1981)].
  4. G. G. Luther and W. R. Towler, Redetermination of the Newtonian gravitational constant G, Phys. Rev. Lett. 48, 121-123 (1982).
  5. G. Gilles, The Newtonian constant, Metrologia 24 (Supplement), p. 56 (1987).
  6. W. Michaelis et al., A new precise determination of Newton's gravitational constant, Metrologia 32, 267-276 (1995/96).
  7. O. V. Karagioz and V. P. Izmailov, Measurement of the gravitational constant with a torsion balance, Izmer. Tekh. 39 (10), 3-9 (1996) [Meas. Tech. 39 (10), 979-987 (1996)].
  8. C. H. Bagley and G. G. Luther, Preliminary results of a determination of the Newtonian constant of gravitation: A test of the Kuroda hypothesis, Phys. Rev. Lett. 78 (16), 3047-3050 (1997).
  9. M. P. Fitzgerald and T. R. Armstrong, The measurement of G using the MSL torsion balance, Meas. Sci. Technol. 10 (6), 439-444 (1999).
  10. J. Luo et al., Determination of the Newtonian gravitational constant G with a nonlinear fitting method, Phys. Rev. D 59, 042001 (1999).
  11. P. Mohr, Quantum electrodynamics and the fundamental constants, Advances in Quantum Chemistry 30, 77 (1998).
  12. J. H. Gundlach and S. M. Merkowich, Measurement of Newton's constant using a torsion balance with angular acceleration feedback, Phys. Rev. Lett. 85, 2869-2872 (2000).
  13. T. J. Quinn, C. C. Speake, S. J. Richmann et al., A new determination of G using two methods, Phys. Rev. Lett. 87, 111101 (2001).
  14. St. Schlamminger, E. Holzschuh and W. Kundig, Determination of the gravitational constant with a beam balance, Phys. Rev. Lett. 89, 161102 (2002).
  15. P. J. Mohr and B. N. Taylor, CODATA recommended values of the fundamental physical constants: 2002, Rev. Mod. Phys. 77 (1), 1-107 (2005).
  16. T. R. Armstrong and M. P. Fitzgerald, New measurement of G using the measurement laboratory torsion balance, Phys. Rev. Lett. 91 (20), 201101-1 (2003).
  17. St. Schlamminger et al., Measurement of Newton's gravitational constant, Phys. Rev. D 74, 082001 (2006).
  18. K. Kuroda, Does the time-of-swing method give a correct value of the Newtonian gravitational constant?, Phys. Rev. Lett. 75 (15), 2796-2798 (1995).
  19. V. K. Milyukov, The theory of motion of the torsion balance in inhomogeneous gravitational field under the action of random noise. In: Problems of Gravitation and Elementary Particle Theory, (Energoizdat, Moscow, 1981, 12 th issue, p. 128) (in Russian).
  20. X.-D. Fan et al., Coupled modes of the torsion pendulum, Phys. Lett. A, doi: 10.1016/j.physleta.2007.08.020 (2007).
For more information about this paper please visit Springer's Home Page of this paper.



Back to The Contents Page