Slowly rotating wormholes: the first-order approximation

P.E. Kashargin1 and S.V. Sushkov2

Abstract

We discuss a solution describing a rotating wormhole in general relativity with a scalar field source having negative kinetic energy. To solve the problem, we use the assumption of slow rotation. The role of a small dimensionless parameter is played the ratio of the linear velocity of rotation of the wormhole throat and the velocity of light. The rotating wormhole solution is constructed in the first-order approximation with respect to the small parameter. We analyze the solution obtained and study test particle motion and light propagation in the spacetime of a rotating wormhole.

References

  1. M. S. Morris and K. S. Thorne, Am. J. Phys. 56, 395 (1988).
  2. M. Visser, Lorentzian Wormholes: from Einstein to Hawking (American Institute of Physics, Woodbury, 1995).
  3. D. Hochberg and M. Visser, Phys. Rev. D 56 4745 (1997); Phys. Rev. D 58 044021 (1998).
  4. H. Ellis, J. Math. Phys. 14, 104 (1973).
  5. K. A. Bronnikov, Acta Phys. Polon. B 4, 251 (1973).
  6. T. Kodama, Phys. Rev. D 18 3529 (1978); C. Barcelo and M. Visser, Phys. Lett. B 466 127 (1999); Class. Quant. Grav. 17 3843 (2000).
  7. S. V. Sushkov and S.-W. Kim, Class. Quant. Grav. 19 4909 (2002).
  8. S. V. Sushkov, Phys. Lett. A 164 33 (1992); D. Hochberg, A. Popov, and S. V. Sushkov, Phys. Rev. Lett. 78 2050 (1997).
  9. K. K. Nandi, B. Bhattacharjee, S. M. K. Alam, and J. Evans, Phys. Rev. D 57 823 (1998).
  10. K. A. Bronnikov, G. Clement, C.P. Constantinidis, and J.C. Fabris, Phys. Lett. A 243 121 (1998); Grav. & Cosmol. 4 128 (1998).
  11. L. A. Anchordoqui and S. E. P. Bergliaffa, Phys. Rev. D 62 067502 (2000); K. A. Bronnikov and S.-W. Kim, Phys. Rev. D 67 064027 (2003); M. La Camera, Phys. Lett. B 573 27 (2003); F. S. N. Lobo, gr-qc/0701133.
  12. S. V. Sushkov, Phys. Rev. D 71 043520 (2005); F. S. N. Lobo, Phys. Rev. D 71 084011 (2005).
  13. F. S. N. Lobo, Phys. Rev. D 73 064028 (2006).
  14. A. Das and Sayan Kar, Class. Quant. Grav. 22 3045 (2005).
  15. J. P. S. Lemos, F. S. N. Lobo, and S. Q. de Oliveira, Phys. Rev. D 68 064004 (2003).
  16. E. Teo, Phys. Rev. D 58 024014 (1998).
  17. V. M. Khatsymovsky, Phys. Lett. B 429 254 (1998).
  18. S. E. Perez Bergliaffa and K. E. Hibberd, gr-qc/0006041.
  19. P. K. F. Kuhfittig, Phys. Rev. D 67 064015 (2003).
  20. S.-W. Kim, Nuovo Cim. 120B, 1235 (2005).
  21. C. Armendariz-Picon, Phys. Rev. D 65 104010 (2002).
  22. J. B. Hartle, Astroph. J. 150 1005 (1967).
  23. L.D. Landau and E.M. Lifshitz, The Classical Theory of Fields (Pergamon, Oxford, 1975).
  24. P.E. Kashargin and S.V. Sushkov, in preparation.
For more information about this paper please visit Springer's Home Page of this paper.



Back to The Contents Page