Einstein-Born-Infeld on Taub-NUT spacetime in 2k + 2 dimensions

A. Khodam-Mohammadi1


We wish to construct solutions of Taub-NUT spacetime in Einstein-Born-Infeld gravity in even dimensions. Since the Born-Infeld theory is a nonlinear electrodynamics theory, in leads to nonlinear differential equations. However, a proper analytical solution was not obtained, we try to solve it numerically (by the Runge-Kutta method) with initial conditions coinciding with those of our previous work in Einstein-Maxwell gravity. We solve the equations for 4, 6 and 8 dimensions and do data fitting by the least-squares method. For N = l = b = 1, the metric turns to the NUT solution only in 8 dimensions, but in 4 and 6 dimensions the spacetime does not have any NUT solution.


  1. M. Born and L. Infeld, Proc. Roy. Soc. Lond. A 44, 425 (1934).
  2. B. Hoffmann, Phys. Rev. 47, 877 (1935).
  3. S. W. Hawking, C. J. Hunter and D. N. Page, Phys. Rev. D 59, 044033 (1999).
  4. R. B. Mann, Phys. Rev. D 60, 104047 (1999).
  5. M. H. Dehghani and A. Khodam Mohammadi, Phys. Rev. D. 73, 124039 (2006).
  6. M. Demianski, Found. Phys. 16, 187 (1986); D. Wiltshire, Phys. Rev. D 38, 2445 (1988).
  7. R. G. Cai, D. W. Pang and A. Wang, Phys. Rev. D 70, 124034 (2004).
  8. T. K. Dey, Phys. Lett. B 595, 484 (2004).
  9. M. H. Dehghani, G. H. Bordbar and M. Shamirzaei, Phys. Rev. D 74, 064023 (2006).
  10. M. H. Dehghani, S. H. Hendi, A. Sheykhi, H. Rastegar Sedehi, JCAP 0702, 020 (2007).
  11. M. H. Dehghani, A. Sheykhi, S. H. Hendi, Phys. Lett. B 659, 476 (2008).
For more information about this paper please visit Springer's Home Page of this paper.

Back to The Contents Page