Motion of spin in the gravitational field of a rotating body

Yuri N. Obukhov,1, Alexander J. Silenko2, Oleg V. Teryaev3

Abstract

A relativistic equation describing the motion of a classical spin in curved spacetimes is obtained. Classical and quantum equations of motion of spin in the gravitational field of a rotating body are derived.

References

  1. M. Mathisson, Acta Phys. Polon. 6, 163 (1937).
  2. A. A. Pomeransky and I. B. Khriplovich, Zh. Eksp. Teor. Fiz. 113, 1537 (1998) [J. Exp. Theor. Phys. 86, 839 (1998)].
  3. A. J. Silenko, Acta Phys. Polon. Proc. Suppl. B 1, 87 (2008).
  4. A. A. Pomeransky, R. A. Senkov, and I. B. Khriplovich, Usp. Fiz. Nauk 43, 1129 (2000) [Phys. Usp. 43, 1055 (2000)].
  5. H. Thirring, Phys. Z. 19, 33 (1918) [Gen. Rel. Grav. 16, 712 (1984)]; Phys. Z. 22, 29 (1921) [Gen. Rel. Grav. 16, 725 (1984)]; J. Lense and H. Thirring, Phys. Z. 19, 156 (1918) [Gen. Rel. Grav. 16, 727 (1984)].
  6. I. Yu. Kobzarev and L. B. Okun, Zh. Eksp. Teor. Fiz. 43, 1904 (1962) [Sov. Phys. JETP 16, 1343 (1963)].
  7. O. V. Teryaev, Spin structure of nucleon and equivalence principle, hep-ph/9904376.
  8. A. J. Silenko and O. V. Teryaev, Phys. Rev. D 76, 061101(R) (2007).
  9. B. J. Venema et al., Phys. Rev. Lett. 68, 135 (1992).
  10. A.J. Silenko and O.V. Teryaev, Phys. Rev. D 71, 064016 (2005).
  11. L. I. Schiff, Am. J. Phys. 28, 340 (1960); Proc. Nat. Acad. Sci. 46, 871 (1960); Phys. Rev. Lett. 4, 215 (1960).
  12. A. J. Silenko, J. Math. Phys. 44, 2952 (2003).
For more information about this paper please visit Springer's Home Page of this paper.



Back to The Contents Page