General relativity and the standard model in scale-invariant variables

A.B. Arbuzov1, B.M. Barbashov2, A. Borowiec3, V.N. Pervushin4, S.A. Shuvalov5 and A.F. Zakharov6

Abstract

General Relativity and Standard Model are formulated in terms of scale-invariant variables where the initial data are integrals of motion. In this case, the Hubble law can be explained by a cosmological evolution of particle masses. Supernovae type Ia data and the CMB energy budget in the model are in agreement with the dominance of a scalar field kinetic energy density and an intensive cosmological creation of primordial W, Z, and Higgs bosons from vacuum. Some arguments are discussed testifying to that two-photon processes of primordial particle annihilation and decays form three peaks in the CMB power spectrum, and their values and positions l = 220, 546, 800 are in agreement with the QED coupling constant, Weinberg's angle, and the Higgs particle mass of about 118 GeV.

References

  1. J. Dunkley et al., arXiv:0803.0732; G. Hinshaw et al., arXiv:0803.0586.
  2. M. Giovannini, Int. J. Mod. Phys. D 14, 363 (2005).
  3. E.P. Wigner, Annals of Math. 40 149 (1939); V. Bargmann, E.P. Wigner, Proc. Nat. Acad. Sci. USA 34, 211 (1948).
  4. S. Schweber, An Introduction to Relativistic Quantum Field Theory (Row, Peterson and Co, Evanston, Ill., Elmsford, N.Y, 1961).
  5. N. N. Bogoliubov, A. A. Logunov, A. I. Oksak, and I. T. Todorov, General Principles of Quantum Field Theory (Moscow, Nauka, 1987, in Russian).
  6. V. I. Ogievetsky and I. V. Polubarinov, Ann. Phys. (NY) 25, 358 (1963); Nouvo Cim. 23, 1273 (1962); Zh. Eksp. Teor. Fiz. 45 237, 709, 966 (1962); ibid., 46, 1048 (1964).
  7. R. Utiyama, Phys. Rev. 101, 1597 (1956); T. W. B. Kibble, J. Math. Phys. 2, 212 (1961).
  8. V.A. Fock, Zs. f. Phys. 57, 261 (1929).
  9. P. A. M. Dirac, Proc. Roy. Soc. A 246, 333 (1958); Phys. Rev. 114, 924 (1959).
  10. R. Arnowitt, S. Deser, and C. W. Misner, The dynamics of general relativity, in: L. Witten, Gravitation: An Introduction to Current Research (Wiley, 1962), pp. 227-265.
  11. A. F. Zakharov, V. A. Zinchuk, and V. N. Pervushin, Physics of Particles and Nuclei, Vol. 37, 104 (2006).
  12. B. M. Barbashov et al., Phys. Lett. B 633, 458 (2006) [hep-th/0501242]; Int. J. Mod. Phys. A 21, 5957 (2006); Int. J. Geom. Meth. Mod. Phys. 4, 171 (2007).
  13. R. Illge and R. Schimming, Ann. der Physik 8, 319 (1999).
  14. J. A. Wheeler, in: Batelle Rencontres, 1967, Lectures in Mathematics and Physics, ed. C. DeWitt and J. A. Wheeler (New York, 1968); B. S. DeWitt, Phys. Rev. 160, 1113 (1967).
  15. V. N. Pervushin and V. A. Zinchuk, Physics of Atomic Nuclei 70, 590 (2007).
  16. C. Misner, Phys. Rev. 186, 1319 (1969).
  17. A. Lichnerowicz, Journ. Math. Pures and Appl. B 37, 23 (1944); J. W. York (Jr.), Phys. Rev. Lett. 26, 1658 (1971); K. Kuchar, J. Math. Phys. 13, 768 (1972).
  18. A. G. Riess et al., Astron. J. 116, 1009 (1998); S. Perlmutter et al., Astrophys. J. 517, 565 (1999); A. D. Riess, L.-G. Strolger, J. Tonry et al.,, Astrophys. J. 607, 665 (2004).
  19. D. Behnke et al., Phys. Lett. B 530, 20 (2002).
  20. D. Behnke, Conformal Cosmology Approach to the Problem of Dark Matter, PhD Thesis, Rostock Report MPG-VT-UR 248/04 (2004).
  21. A. F. Zakharov, A. A. Zakharova, and V. N. Pervushin, astro-ph/0611639.
  22. A. M. Khvedelidze, V. V. Papoyan, and V. N. Pervushin, Phys. Rev. D 51, 5654 (1995).
  23. F. Hoyle, A New Model for the Expanding Universe, MNRAS 108, 372 (1948), ADS Bibliographic Code: 1948 MNRAS.108.372H. J. V. Narlikar, R. G. Vishwakarma, and G. Burbidge, Publ. Astron. Soc. Pac. 114 1092 (2002).
  24. P. A. M. Dirac, Proc. Roy. Soc. Lond. A 114, 243 (1927); Can. J. Phys. 33, 650 (1955).
  25. P. A. M. Dirac, Proc. R. Soc. Lond. A 333, 403 (1973).
  26. A. B. Borisov and V. I. Ogievetsky, Teor. Mat. Fiz. 21, 329 (1974).
  27. M. Pawlowski and R. Raczka, Found. Phys. 24, 1305 (1994); M. Pawlowski, et al., Phys. Lett. B 418, 263 (1998); R. Kallosh et al., Class. Quantum Grav. 17, 4269 (2000).
  28. M. Piatek, V. N. Pervushin, and A. B. Arbuzov, Fizika B (Zagreb) 17, 189 (2008).
  29. A. L. Zelmanov, Dokl. AN SSSR 107, 315 (1956); ibid., 209, 822 (1973); Yu. S. Vladimirov, References Frames in Theory of Gravitation (Moscow, Energoizdat, 1982, in Russian).
  30. A. Einstein, Sitzungsber. d. Berl. Akad. 1, 147 (1917).
  31. V. Pervushin, Acta Physica Slovakia 53, 237 (2003); D. B. Blaschke et al., Phys. Atom. Nucl. 67, 1050 (2004); ibid., 68, 1090 (2005).
  32. N. A. Chernikov and E. A. Tagirov, Ann. Inst. H. Poincare 9, 109 (1968); E. A. Tagirov and N. A. Chernikov, preprint P2-3777, JINR, 1967; K. A. Bronnikov and E. A. Tagirov, preprint P2-4151, JINR, 1968; Grav. Cosmol. 10, 249 (2004).
  33. L. Parker, Phys. Rev. 183, 1057 (1969).
  34. A. A. Grib, S. G. Mamaev and V. M. Mostepanenko, Quantum Effects in Strong External Fields (Energoatomizdat, Moscow, 1988). A. A. Starobinsky, Phys. Lett. B 91, 99 (1980).
  35. V. N. Pervushin and V. I. Smirichinski, J. Phys. A 32, 6191 (1999).
  36. A. B. Arbuzov et al., arXiv:0705.4672 [hep-ph].
  37. V. F. Mukhanov, H. A. Feldman, and R. H. Brandenberger, Phys. Rep. 215, 203 (1992).
  38. R. H. Cyburt et al., Phys. Lett. B 567, 227 (2003); K. A. Olive, G. Steigman, and T. P. Walker, Phys. Rep. 333, 389 (2000).
  39. N. A. Chernikov, Phys. Lett. 5, 115 (1963); Acta. Phys. Pol. 23, 629 (1963); ibid., 26, 1069 (1964); ibid., 27, 465 (1964).
  40. Ingo Muller, A History of Thermodynamics: The Doctrine of Energy and Entropy (Springer Published 2007/01).
  41. S. A. Smolyansky et al., Proc. of the Conf. "Progress in Nonequilibrium Green's Functions", Dresden, Germany, 19-23 Aug. 2002, Eds. M. Bonitz and D. Semkat (World Scientific, New Jersey, London, Singapur, Hong Kong).
  42. J. Bernstein, Kinetic theory in the expanding universe, (CUP, 1985).
  43. L.B. Okun, Leptons and Quarks (Nauka, Moscow, 1981; North-Holland, Amsterdam, 1982).
  44. A. B. Arbuzov et al., arXiv:0802.3427 [hep-ph], submitted to Yadernaya Fizika.
  45. Yu. G. Ignatyev, Russ. Phys. J. 29, 104 (1986); Grav. Cosmol. 13, 31 (2007); Yu. G. Ignatyev and D. Yu. Ignatyev, Grav. & Cosmol. 13 101 (2007).
  46. W. J. Cocke and W. G. Tifft, Astrophys. J. 368, 383 (1991); K. Bajan, P. Flin, W. Godlowski, V. Pervushin, and A. Zorin, Spacetime & Substance 4, 225 (2003).
  47. M.E. Shaposhnikov, Nucl. Phys. B 287, 757 (1987); V.A. Matveev et al., Usp. Fiz. Nauk 156, 253 (1988); V.A. Rubakov and M.E. Shaposhnikov, Usp. Fiz. Nauk 166, 493 (1996).
For more information about this paper please visit Springer's Home Page of this paper.



Back to The Contents Page