Wormholes supported by chiral fields

Kirill A. Bronnikov1, Sergey V. Chervon2, Sergey V. Sushkov3

Abstract

We consider static, spherically symmetric solutions of general relativity with a non-linear sigma model (NSM) as a source, i.e., a set of scalar fields F = (F1,...,Fn) (so-called chiral fields) parametrizing a target space with a metric hab(F). For NSM with zero potential V(F), it is shown that the space-time geometry is the same as with a single scalar field but depends on hab. If the matrix hab is positive-definite, we obtain the Fisher metric, originally found for a canonical scalar field with positive kinetic energy; otherwise we obtain metrics corresponding to a phantom scalar field, including singular and nonsingular horizons (of infinite area) and wormholes. In particular, the Schwarzschild metric can correspond to a nontrivial chiral field configuration, which in this case has zero stress-energy. Some explicit examples of chiral field configurations are considered. Some qualitative properties of NSM configurations with nonzero potentials are pointed out.

References

  1. I. Z. Fisher, Zh. Eksp. Teor. Fiz. 18, 636 (1948); gr-qc/9911008.
  2. S. V. Chervon, Nonlinear fields in theory of gravitation and cosmology (Middle-Volga Scientific Centre, Ulyanovsk State University, Ulyanovsk, 1997).
  3. O. Bergmann and R. Leipnik, Phys. Rev. 107, 1157 (1957).
  4. H. Yilmaz, Phys. Rev. 111, 1417 (1958).
  5. H. A. Buchdahl, Phys. Rev. 115, 1325 (1959).
  6. A. I. Janis, D. C. Robinson, and J. Winicour, Phys. Rev. 186, 1729 (1969).
  7. H. Ellis, J. Math. Phys. 14, 104 (1973).
  8. K. A. Bronnikov, Acta Phys. Pol. B 4, 251 (1973).
  9. M. Wyman, Phys. Rev. D 24, 839 (1981).
  10. C. Armendariz-Picon, Phys. Rev. D 65, 104010 (2002).
  11. S. V. Sushkov and Y.-Z. Zhang, Phys. Rev. D 77, 024042 (2008).
  12. A. R. Liddle and D. H. Lyth, Cosmological Inflation and Large-Scale Structure, (Cambridge University Press, 2000)
  13. A. M. Perelomov, Phys. Rep. 146, No 3, 136 (1987).
  14. J. Schwinger, Ann. Phys. 2, 407 (1957).
  15. T. H. R. Skyrme, Proc. Roy. Soc. Lond. A247, No 1249, 260 (1958).
  16. M. Gell-Mann and M. Levy, Nuovo Cim. 26, No 4, 705 (1960).
  17. V. De Alfaro, S. Fubini, and G. Furlan, Nuovo Cim. A 50, 523 (1979).
  18. G. G. Ivanov, Teor. Mat. Fiz. 57, 45 (1983).
  19. S. V. Chervon, Izv. Vuzov, Fiz. (Russ. Phys. J., New York) 26, No 8, 89 (1983).
  20. S. V. Chervon, Grav. Cosmol. 1, 91 (1995).
  21. S. V. Chervon, Grav. Cosmol. 3, 145 (1997).
  22. V. D. Ivashchuk and V. N. Melnikov, Exact solutions in multidimensional gravity with antisymmetric forms, topical review. Class. Quantum Grav. 18 R87-R152 (2001); hep-th/0110274.
  23. M. S. Morris and K. S. Thorne, Am. J. Phys. 56, 395 (1988).
  24. D. Hochberg and M. Visser, Phys. Rev. D 56 4745 (1997).
  25. K. A. Bronnikov, M. S. Chernakova, J. C. Fabris, N. Pinto-Neto and M. E. Rodrigues, Int. J. Mod. Phys. D 17, 25-42 (2008); gr-qc/0609084.
  26. K. A. Bronnikov and S. G. Rubin, Lectures on Gravitation and Cosmology (MIFI Press, Moscow, 2008, in Russian).
  27. S. V. Chervon, J. Astroph. Astron. 16, Suppl. 65 (1995).
  28. K. A. Bronnikov, S. B. Fadeev and A. V. Michtchenko, Gen. Rel. Grav. 35 505 (2003); gr-qc/0212065.
  29. S. Adler and R. B. Pearson, Phys. Rev. D 18 2798 (1978).
  30. K. A. Bronnikov, Phys. Rev. D 64 064013 (2001); gr-qc/0104092.
For more information about this paper please visit Springer's Home Page of this paper.



Back to The Contents Page