Exact rotating and expanding cosmologies in Einstein-Cartan theory

A.M. Galiakhmetov1

Abstract

In the framework of the Einstein-Cartan theory, nonstationary rotating cosmological models containing a nonminimally coupled scalar field with a potential and an anisotropic fluid are considered. Exact special solutions of the gravitational and scalar field equations are obtained for an arbitrary coupling constant. It is shown that the models are nonsingular and their evolution includes a transition from deceleration to an accelerated phase. At late stages, the models rapidly evolve to an isotropic state with critical matter density and a flat type of space.

References

  1. L. M. Krauss and M. S. Turner, Gen. Rel. Grav. 27, 1137 (1995); astro-ph/9504003.
  2. L. M. Krauss, Astrophys. J. 480, 466 (1997); astro-ph/9607103.
  3. T. Totani, Y. Yoshii and K. Sato, Astrophys. J. 483, L75 (1997); astro-ph/97050014.
  4. A. G. Riess et al., Astron. J. 116, 1009 (1998).
  5. S. J. Perlmutter, Astron. J. 517, 565 (1999).
  6. A. Melchiorri et al., Astrophys. J. 536, L63 (2000); astro-ph/9911445.
  7. S. Hanany et al., Astrophys. J. 545, L5 (2000); astro-ph/0005123.
  8. A. H. Jaffe et al., Phys. Rev. Lett. 86, 3475 (2001). astro-ph/0007333.
  9. V. Sahni and A. A. Starobinsky, Int. J. Mod. Phys. 9, 373 (2000).
  10. T. Padmanabham, Phys. Rep. 380, 335 (2003).
  11. P. J. E. Peebles and B. Ratra, Rev. Mod. Phys. 75, 599 (2003).
  12. A. M. Galiakhmetov, Grav. Cosmol. 10, No 4 (40), 300 (2004).
  13. A. M. Galiakhmetov, Grav. Cosmol. 13, No 3 (51), 217 (2007).
  14. F. W. Hehl, P. von der Heyde, G.D. Kerlik, and J.M. Nester, Rev. Mod. Phys. 48, 393 (1976).
  15. V. N. Ponomarev, A. O. Barvinsky and Yu. N. Obukhov, Geometrodynamics Methods and Gauge Approach in the Theory of Gravity (Energoatomizdat, Moscow, 1985, in Russian).
  16. A. V. Minkevich and A. S. Garkun, Class. Quantum Grav. 23, 4237 (2006).
  17. L. Amendola, M. Quartin, S. Tsujikawa and I. Waga, Challenges for scaling cosmologies, astro-ph/0605488.
  18. S. Nojiri and S. D. Odintsov, "The new form of the equation of state for dark energy fluid and accelerating universe", hep-th/0606025.
  19. Yu. N. Obukhov, in: "Colloquium on cosmic rotation" (Berlin, Feb. 1998), Eds. M. Scherfner, T. Chrobok and M. Shefaat (Wissenschaft und Technik Verlag: Berlin, 2000) 23-96; astro-ph/0008106.
  20. V. A. Korotky and Yu. N. Obukhov, Russ. Phys. J. 37, 961 (1994).
  21. V. A. Korotky and Yu. N. Obukhov, Russ. Phys. J. 37, 909 (1994).
  22. Yu. N. Obukhov and V. A. Korotky, Class. Quantum. Grav. 4, 1633 (1987).
  23. V. F. Panov, Izvestiya VUZov, Fizika No 1, 62 (1990).
  24. V. F. Panov, Izvestiya VUZov, Fizika No 2, 54 (1991).
  25. V. A. Korotky and Yu. N. Obukhov, Sov. Phys. JETP 72, No 1, 11 (1991).
  26. V. G. Krechet, Izvestiya VUZov, Fizika No 3, 3 (2005).
  27. Yu. S. Vladimirov Reference Frames in General Relativity (Energoizdat, Moscow, 1982, in Russian).
  28. D. D. Ivanenko and Yu. N. Obukhov, in: Perspectives of the Unified Theory. Eds. D. V. Gal'tsov, L. S. Kuz'menkov and P. I. Pronin (Moscow State Univ. Press, Moscow, 1991), 98-115.
  29. V. A. Korotky and Yu. N. Obukhov, Astrophys. Space Sci. 198, No. 1, 1 (1992).
  30. V. N. Pavelkin and V. F. Panov, Izvestiya VUZov, Fizika No. 8, 90 (1993).
  31. V. G. Krechet, Izvestiya VUZov, Fizika No. 12, 9 (1985).
  32. A. M. Galiakhmetov, Grav. Cosmol. 14, 190 (2008).
For more information about this paper please visit Springer's Home Page of this paper.



Back to The Contents Page