The idea of the universe as a black hole revisited

Henning Knutsen1


The Friedmann equation for a homogeneous and isotropic universe model with a cosmological constant yields the eventual maximal expansion of a closed dust universe. On the other hand, from the line element for the false vacuum outside a spherically matter distribution we obtain the generalized Schwarzschild radius, i.e., the position of the event horizon. It has been argued that the mathematical similarity of these two quantities cannot be a coincidence, but means that the universe is inside a black hole. We show that this interpretation is wrong. Matching the two metrics, we find what we intuitively expect: our expanding universe cannot be inside the event horizon of the vacuum metric.


  1. R. K. Pathria, Nature 240, 298 (1972).
  2. W. B. Bonnor, in: Recent Develpoments in General Relativity (Pergamon Press, London, 1962), p. 167.
  3. E. F. Taylor and J. A. Wheeler, Exploring Black Holes. Introduction to General Relativity, (Addison-Wesley-Longman, New York, 2000).
  4. C. W. Misner and D. H. Sharp, Phys. Rev. 136, 2B571 (1964).
  5. W. C. Hernandez and C. W. Misner, Astrophys. J. 143, 452 (1966).
  6. M. E. Cahill and G.C. McVittie, J. Math. Phys. 11, 1382, 1392 (1970).
  7. E. N. Glass, J. Math. Phys. 20, 1508 (1979).
  8. M. Goliath, U. S. Nilsson and C. Uggla, Class. Quantum Grav. 15, 2841 (1998).
  9. J. Eisenstaedt, Phys. Rev. D 16, 927 (1977).
  10. N. O. Santos, Mon. Not. R. Astr. Soc. 216, 403 (1985).
  11. W. B. Bonnor, A. K. G. de Oliveira and N. O. Santos, Phys. Rep. 181, No. 5, 269 (1989).
  12. W. B. Bonnor and P. A. Vickers, Gen. Rel. Grav. 13, 29 (1981).
For more information about this paper please visit Springer's Home Page of this paper.

Back to The Contents Page