De Sitter Special Relativity: Effects on cosmology

R. Aldrovandi and J. G. Pereira1

Abstract

The main consequences of de Sitter Special Relativity for the Standard Model of physical cosmology are examined. The cosmological constant L appears, in this theory, as a manifestation of the proper conformal current which must be added to the usual energy-momentum density when the Poincare kinematics of special relativity is replaced by a de Sitter kinematics. Since that conformal current itself vanishes in the absence of sources, L is ultimately dependent on the matter content and can in principle be calculated. A present-day value very close to that given by the crossed supernova/BBR data is obtained through simple and reasonable assumptions. Also, a primeval inflation of polynomial type is found, and the usual notion of a comoving observer is shown to be slightly modified.

References

  1. J. Magueijo and L. Smolin, Phys. Rev. Lett. 88, 190403 (2002) [hep-th/0112090]; G. Amelino-Camelia, Int. J. Mod. Phys. D11, 35 (2002) [gr-qc/0012051]; J. Kowalski-Glikman, Lect. Notes Phys. 669, 131 (2005) [hep-th/0405273]; J. Kowalski-Glikman, in: Approaches to Quantum Gravity - Toward a New Understanding of Space, Time, and Matter, ed. D. Oriti (Cambridge University Press, Cambridge, 2006) [gr-qc/0603022]; A. Das and O. W. C. Kong, Phys. Rev. D 73, 124029 (2006) [gr-qc/0603114].
  2. G. Amelino-Camelia, Lect. Not. Phys. 541, 1 (2000) [gr-qc/9910089]; R. J. Protheroe and H. Meyer, Phys. Lett. B 493, 1 (2000); D. V. Ahluwalia, Mod. Phys. Lett. A 17, 1135 (2002) [gr-qc/0205121]; T. Jacobson, S. Liberati and D. Mattingly, Phys. Rev. D 66, 081302 (2002) [hep-ph/0112207]; R. C. Myers and M. Pospelov, Phys. Rev. Lett. 90, 211601 (2003) [hep-ph/0301124]; R. H. Brandenberger and J. Martin, Int. J. Mod. Phys. A 17, 3663 (2002) [hep-th/0202142].
  3. J. Albert et al (for the MAGIC Collaboration), J. Ellis, N. E. Mavromatos, D. V. Nanopoulos, A. S. Sakharov and E. K. G. Sarkisyan, Probing quantum gravity using photons from a Mkn 501 flare observed by MAGIC [astro-ph/0708.2889].
  4. R. Aldrovandi, J. P. Beltran Almeida and J. G. Pereira, Class. Quantum Grav. 24, 1385 (2007) [gr-qc/0606122].
  5. H. Bacry and J. M. Levy-Leblond, J. Math. Phys. 9, 1605 (1968); C. Duval, G. Burdet, H. P. K. Kunsle and M. Perrin, Phys. Rev. D31, 1841 (1985); R. Aldrovandi, A. L. Barbosa, L. C. B. Crispino and J. G. Pereira, Class. Quantum Grav. 16, 495 (1999).
  6. R. Aldrovandi and J. G. Pereira, Found. Phys. 39, 1 (2009) [arXiv: 0711.2274].
  7. R. Aldrovandi and J. G. Pereira, Is physics asking for a new kinematics?, arXiv: 0805.2584, to appear in Int. J. Mod. Phys. D.
  8. F. Gursey, in: Group Theoretical Concepts and Methods in Elementary Particle Physics, ed. F. Gursey, Istanbul Summer School of Theoretical Physics (Gordon and Breach, New York, 1962).
  9. E. Inonu and E. P. Wigner, Proc. Natl. Acad. Scien. 39, 510 (1953); E. Inonu, in: Group Theoretical Concepts and Methods in Elementary Particle Physics, ed. F. Gursey, Istanbul Summer School of Theoretical Physics (Gordon and Breach, New York, 1962).
  10. R. Gilmore, Lie Groups, Lie Algebras, and Some of Their Applications (Wiley, New York, 1974).
  11. R. Aldrovandi, J. P. Beltran Almeida, C. S. O. Mayor, and J. G. Pereira, Lorentz transformations in de Sitter relativity [gr-qc/0709.3947]; de Sitter Relativity and Quantum Physics, in: "Quantum Theory: Reconsideration of Foundations 4", ed. G. Adenier, A. Khrennikov and T. Nieuwenhuizen (AIP Conference Proceedings, New York, 2007) [gr-qc/0710.0610].
  12. S. Coleman, Aspects of Symmetry (Cambridge University Press, Cambridge, 1985).
  13. R. Aldrovandi, J. P. Beltran Almeida and J. G. Pereira, Int. J. Mod. Phys. D 13, 2241 (2004) [gr-qc/0405104]; Grav. Cosmol. 11, 277 (2005) [gr-qc/0312017]; J. Geom. Phys. 56, 1042 (2006) [gr-qc/0403099].
  14. A. Friedmann, Z. Phys. 10, 377 (1922) and 21, 326 (1924); A. G. Lemaitre, MNRAS 91, 483 (1931); H. P. Robertson, Ap. J. 82, 248 (1935); A. G. Walker, Proc. Lond. Math. Soc. 42, 90 (1936).
  15. S. Weinberg, Gravitation and Cosmology (J. Wiley, New York, 1972).
  16. E. W. Kolb and M. S. Turner, The Early Universe (Perseus Books, 1994).
  17. J. V. Narlikar, An Introduction to Cosmology, 3rd edition (Cambridge University Press, Cambridge, 2002).
  18. D. N. Spergel et al, First year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Determination of cosmological parameters, astro-ph/0302209 (2003). Updated data available at the site http://lambda.gsfc.nasa.gov.
  19. Particle Data Group, Review of Particle Physics; S. Eidelman et al, updated data at the site http://pdg.lbl.gov/.
  20. See, e.g,, R. Aldrovandi, R. R. Cuzinatto and L. G. Medeiros, Found. Phys. 36, 1736 (2006) [gr-qc/0508073].
  21. S. W. Hawking and G. F. R. Ellis, The Large Scale Structure of Space-Time (Cambridge University Press, Cambridge, 1973).
  22. R. Aldrovandi and J. G. Pereira, An Introduction to Geometrical Physics (World Scientific, Singapore, 1995).
For more information about this paper please visit Springer's Home Page of this paper.



Back to The Contents Page