Symmetries of fundamental interactions in quantum phase space

V.V. Khruschov1

Abstract

Quantum operators of coordinates and momentum components of a particle in Minkowski space-time belong to a noncommutative algebra and give rise to a quantum phase space. Under some constraints, in particular, the Lorentz invariance condition, the algebra of observables, including the Lorentz group generators, depends on additional fundamental physical constants with the dimensions of mass, length and action. Generalized symmetries in a quantum phase space and some consequences for fundamental interactions of particles are considered.

References

  1. N. N. Bogoliubov, A. A. Logunov, A. I. Oksak, and I. T. Todorov, General Principles of Quantum Field Theory (Nauka, M., 1987, in Russian).
  2. D. I. Blokhintsev, Space and Time in Microcosm (Nauka, M., 1982, in Russian).
  3. W. I. Fushchich and A. G. Nikitin, Symmetry of Quantum Mechanics Equations (Nauka, M., 1982, in Russian).
  4. H. Snyder, Phys. Rev. 71, 38 (1947).
  5. Yu. A. Golfand, Sov. Phys. JETP 37 504 (1959).
  6. V. G. Kadyshevsky, Sov. Phys. JETP 41 1885 (1961); V. G. Kadyshevsky, M. D. Mateev, V. N. Rodionov, and A. S. Sorin, Towards a Maximal Mass Model, arXiv: 0708.4205.
  7. M. Born, Proc. Roy. Soc. A165, 291 (1938); A166, 552 (1938).
  8. C. N. Yang, Phys. Rev. 72, 874 (1947).
  9. A. N. Leznov and V. V. Khruschov, A General Form of Commutation Relations of Discrete Space-Time Theory, Prepr. IHEP 73-38, Serpukhov (1973).
  10. V. V. Khruschov, Measurement Techniques 35, No. 11, 1247 (1992); 37, No. 7, 717 (1994); in: Proc. 15th Workshop "Problems of High Energy Physics and Field Theory" (Protvino, July 1992), p. 114 (IHEP, Protvino, 1995); V. V. Khruschov and A. N. Leznov, Grav. & Cosmol. 9 159 (2003), hep-th/0207082.
  11. R. Vilela Mendes, J. Phys. A 27, 8091 (1994).
  12. C. Chryssomalakos and E. Okon, Int. J. Mod. Phys. D13, 2003 (2004), hep-th/0410212.
  13. A. N. Leznov, What Our World Might be Like (as Alternative to Minkowski Space-Time with Poincare Group of Motion), arXiv: 0803.4289.
  14. V. V. Khruschov, Grav. & Cosmol. 13 259 (2007); Generalized Kinematical Symmetries of Quantum Phase Space, talk at the 13th Int. Conf. "Selected Problems of Modern Theoretical Physics", arXiv: 0807.2532.
  15. P. A. M. Dirac, Ann. Math. 36, 657 (1935).
  16. F. Gursey and T. D. Lee, Proc. Nat. Sc. Sci. 49, 179 (1963).
  17. C. Fronsdal, Rev. Mod. Phys. 37, 221 (1965).
  18. V. V. Khruschov, V. I. Savrin, and S. V. Semenov, Phys. Lett. B525, 283 (2002); V. V. Khruschov, Calculations of Meson Mass Spectra in the Model of Quasi-Independent Quarks, talk at the XLI PNPI Winter School, Repino, hep-ph/0702259.
  19. C. Amsler et al. (PDG), Phys. Lett. B667, 1 (2008).
  20. M. Toler, Phys. Rev. D70, 024006 (2004), hep-th/0305121.
  21. A. N. Leznov, Kinematics in SU(2,2)~eq O(2,4) Alternative World (Observable Coordinate and Momentum Representation), arXiv: 0809.1641.
  22. W. P. Shchleich, Quantum Optics in Phase Space (Wiley-VCH Verlag, Berlin, 2001).
  23. C. K. Zachos, D. B. Fairlie, and T. L. Curtright (Eds.), Quantum Mechanics in Phase Space (WS, Singapore, 2005).
  24. V. V. Khruschov, Confinement and U(1,3) Symmetry of Color Particles in Complex Phase Space, hep-ph/0311346.
For more information about this paper please visit Springer's Home Page of this paper.



Back to The Contents Page