Effective spacetime from multidimensional gravity

J. Ponce de Leon1

Abstract

We study the effective spacetimes in lower dimensions that can be extracted from a multidimensional generalization of the Schwarzschild-Tangherlini spacetimes derived by Fadeev, Ivashchuk and Melnikov (Phys. Lett. A 161, 98 (1991)). The higher-dimensional spacetime has D = (4 + n + m) dimensions, where n and m are the number of ïnternal" and ëxternal" extra dimensions, respectively. We analyze the effective (4 + n) spacetime obtained after dimensional reduction of the m external dimensions. We find that when the m extra dimensions are compact (i) the physics in lower dimensions is independent of m and the character of singularities in higher dimensions, and (ii) the total gravitational mass M of the effective matter distribution is less than the Schwarzschild mass. In contrast, when the m extra dimensions are large, this is not so; the physics in (4 + n) does explicitly depend on m as well as on the nature of singularities in high dimensions, and the mass of the effective matter distribution (with the exception of wormhole-like distributions) is larger than the Schwarzschild mass. These results may be relevant to observations for an experimental/observational test of the theory.

References

  1. A. Davidson and D. Owen, Phys. Lett. B 155, 247 (1985).
  2. T. Appelquist, A. Chodos and G. P. O. Freund, Modern Kaluza-Klein Theories (Addison-Wesley, NY, 1987); E. W. Kolb and M. S. Turner, The Early Universe (Adisson-Wesley, NY, 1990).
  3. R.C. Myers and M.J. Perry, Annals of Physics 172, 304 (1986).
  4. F. R. Tangherlini, Nuovo Cimento 27, 636 (1963).
  5. S. B. Fadeev, V. D. Ivashchuk and V. N. Melnikov, Phys. Lett. A 161, 98 (1991).
  6. M. Yoshimura, Phys. Rev. D 34, 1096 (1986).
  7. R. C. Myers, Phys. Rev. D 35, 455 (1987).
  8. V. D. Ivashchuk and V. N. Melnikov, Grav. Cosmol. 1 133 (1995), hep-th/9503223.
  9. V. D. Ivashchuk and V. N. Melnikov, Grav. Cosmol. 1, 204 (1995), gr-qc/9507056.
  10. V. D. Ivashchuk and V. N. Melnikov, Class. Quantum Grav. 11, 1973 (1994).
  11. L. D. Landau and E. M. Lifshitz, The Classical Theory of Fields (Pergamon Press, 1975.)
  12. A. G.Agnese, A. P. Billyard, H. Liu, and P. S. Wesson, Gen. Rel. Gravit. 31, 527 (1999).
  13. V. D. Ivashchuk and V. N. Melnikov, Grav. Cosmol. 2, 211 (1996); hep-th/9612054.
  14. L. Dolan and M. J. Duff, Phys. Rev. Lett. 52, 14 (1984).
  15. I. Z. Fisher, Zh. Eksp. Teor. Fiz. 18, 636 (1948); gr-qc/9911008.
  16. A. I. Janis, E. T. Newman and J. Winicour, Phys. Rev. Lett. 20, 878 (1968).
  17. K. A. Bronnikov, Acta Phys. Pol. B 4, 251 (1973).
  18. P. S. Wesson, Phys. Essays, Orion 5, 591 (1992).
  19. J. R. Gott and M. J. Rees, Mon. Not. R. Astron. Soc. 227, 453 (1987).
  20. E. Kolb, Astrophys J. 344, 543 (1989).
  21. J. Ponce de Leon, Gen. Rel. and Gravit. 11, 1123 (1993).
  22. K.A. Bronnikov, Phys. Rev. D 64, 064013 (2001); gr-qc/0104092.
  23. K. A. Bronnikov and O. B. Zaslavskii, Phys. Rev. D 78, 021501 (2008), arXiv:0801.0889.
  24. K. A. Bronnikov, E. Elizalde, S. D. Odintsov, and O. B. Zaslavskii, Phys. Rev. D 78, 064049 (2008), arXiv:0805.1095.
  25. J. Ponce de Leon, Class. Quant. Grav. 24, 1755 (2007); gr-qc/0701129.
  26. J. Ponce de Leon, Int. J. Mod. Phys. D 18, 251 (2009); gr-qc/0703094.
  27. P.S. Wesson and J. Ponce de Leon, J. Math. Phys. 33, 3883 (1992).
  28. K. A. Bronnikov and S.-W. Kim, Phys. Rev. D 67, 064027 (2003); gr-qc/0212112.
  29. P. S. Wesson, Space-Time-Matter (World Scientific, 1999).
  30. J. M. Overduin, Phys. Rev. D 62, 102001 (2000); gr-qc/0007047.
  31. Hongya Liu and J.M. Overduin, Astrophys. J. 538, 386 (2000); gr-qc/0003034.
  32. P. S. Wesson and J. Ponce de Leon, Class. Quant. Grav. 11, 1341 (1994).
  33. J. Ponce de Leon, Int. J. Mod. Phys. D 1, 237 (2008) 237; gr-qc/0611082.
  34. J. M. Overduin and P. S. Wesson, Phys. Rep. 283, 303 (1997); gr-qc/9805018.
For more information about this paper please visit Springer's Home Page of this paper.



Back to The Contents Page