Interacting spinor and scalar fields in a bianchi type-I universe filled with viscous fluid: Exact and numerical solutions

Bijan Saha1

Abstract

We consider a self-consistent system of spinor and scalar fields in a Bianchi type I gravitational field filled with a viscous fluid in the presence of a cosmological constant. Exact solutions to the set of spinor, scalar and gravitational field equations are obtained in terms of v, the volume scale of Bianchi-I universe. A set of equations for v and eps, where eps is the energy of the viscous fluid, is deduced. Some special cases allowing exact solutions are thoroughly studied.

References

  1. W. Misner, Nature 214, 40 (1967).
  2. W. Misner, Astrophys. J. 151, 431 (1968).
  3. S. Weinberg, Astrophys. J. 168, 175 (1972).
  4. S. Weinberg, Gravitation and Cosmology (New York, Wiley, 1972)
  5. P. Langacker, Phys. Rep. 72, 185 (1981).
  6. I. Waga, R. C. Falcao, and R. Chanda, Phys. Rev. D 33, 1839 (1986).
  7. T. Pacher, J. A. Stein-Schabes, and M. S. Turner, Phys. Rev. D 36, 1603 (1987).
  8. A. H. Guth, Phys. Rev. D 23, 347 (1981).
  9. G. L. Murphy, Phys. Rev. D 8, 4231 (1973).
  10. N. O. Santos, R. S. Dias, and A. Banerjee, J. Math. Phys. 26, 876 (1985).
  11. V. A. Belinsky and I. M. Khalatnikov, Sov. Phys. JETP 69 401, (1975).
  12. Bijan Saha, Mod. Phys. Lett. A 20 (28), 2127 (2005).
  13. Bijan Saha and V. Rikhvitsky, Physica D 219, 168 (2006).
  14. B. Saha and G. N. Shikin, J. Math. Phys. 38, 5305 (1997).
  15. Bijan Saha, Phys. Rev. D 64, 123501 (2001).
  16. B. Saha and G. N. Shikin, Gen. Relat. Grav. 29, 1099 (1997).
  17. Bijan Saha, Mod. Phys. Lett. A 16, 1287 (2001).
  18. B. Saha, Phys. Rev. D 74, 124030 (2006).
  19. Bijan Saha, Romanian Report in Physics 57 (1), 7 (2005).
  20. Bijan Saha, Astrophys. Space Sci. 312, 3 (2007).
  21. M. Fierz, Z. Phys. 104, 553 (1937).
  22. F. A. Kaempffer, Phys. Rev. D 23, 918 (1981)
  23. Y. Takahashi, Phys. Rev. D 26, 2169 (1982).
  24. V. B. Berestetski, E. M. Lifshitz, and L. P. Pitaevski, Quantum Electrodynamics (Nauka, Moscow, 1989).
  25. M. E. Peskin and D. V. Schroeder, An Introduction to Quantum Field Theory (Reading, MA, Addison-Wesley, 1995).
  26. K. C. Jacobs, Astrophys. J. 153, 661 (1968).
  27. L. P. Chimento, Phys. Rev. D 68, 023504 (2003).
  28. V. A. Zhelnorovich, Spinor Theory and Its Application in Physics and Mechanics (Nauka, Moscow, 1982).
  29. D. Brill and J. Wheeler, Rev. Mod. Phys. 29, 465 (1957).
  30. N. N. Bogoliubov and D. V. Shirkov, Introduction to Quantized Field Theory (Nauka, Moscow, 1984).
  31. K. A. Bronnikov, E. N. Chudaeva, and G. N. Shikin, Class. Quantum Grav. 21, 3389 (2004).
  32. N. V. Mitskevich, A. P. Efremov, and A. I. Nesterov, Dynamics of Fields in General Relativity (Energoatomizdat, Moscow, 1985).
  33. E. Kamke, Differentialgleichungen: Losungsmethoden und Losungen (Leipzig, 1957).
  34. W. Heisenberg, Introduction to the Unified Field Theory of Elementary Particles (Interscience Publ., London, 1966).
  35. A. Banerjee, S. B. Duttachoudhury, and A. K. Sanyal, J. Math. Phys. 26, 3010 (1985).
  36. W. Huang, J. Math. Phys. 31, 1456 (1990).
  37. A. P. Prudnikov, Yu. A. Brychkov, and O. I. Marichev, Integrals and Series. v.1: Elementary Functions (New York, Gordon and Breach, 1986).
For more information about this paper please visit Springer's Home Page of this paper.



Back to The Contents Page