Dynamical renormalization group methods in theory of eternal inflation

Dmitry Podolsky1

Abstract

Dynamics of eternal inflation on the landscape admits a description in terms of the Martin-Siggia-Rose (MSR) effective field theory, that is, in one-to-one correspondence with vacuum dynamics equations. On those sectors of the landscape, where transport properties of the probability measure for eternal inflation are important, renormalization group fixed points of the MSR effective action determine late-time behavior of the probability measure. I argue that these RG fixed points may be relevant for the solution of the gauge invariance problem for eternal inflation.

References

  1. A. D. Linde, Phys. Lett. B 175, 395 (1986); Mod. Phys. Lett. A 1, 81 (1986); A. D. Linde, Particle Physics and Inflationary Cosmology, Chur, Switzerland: Harwood (1990) [hep-th/0503203].
  2. A. A. Starobinsky, in Field Theory, Quantum Gravity and Strings, eds. H. J. de Vega and N. Sanchez, Lecture Notes in Physics 246, pp. 107-126, Springer-Verlag, 1986; Y. Nambu and M. Sasaki, Phys. Lett. B 219, 240 (1989); A. A. Starobinsky and J. Yokoyama, Phys. Rev. D 50, 6357 (1994) [astro-ph/9407016]; S. J. Rey, Nucl. Phys. B 284, 706 (1987); D. S. Salopek and J. R. Bond, Phys. Rev. D 43, 1005 (1991); D. I. Podolsky and A. A. Starobinsky, Grav. Cosmol. Suppl. 8N1, 13 (2002) [astro-ph/0204327]; A. J. Tolley and M. Wyman, JCAP 0804, 028 (2008) [arXiv: 0801.1854 [hep-th]]; F. Finelli, G. Marozzi, A. A. Starobinsky, G. P. Vacca, and G. Venturi, arXiv: 0808.1786 [hep-th].
  3. K. i. Nakao, Y. Nambu and M. Sasaki, Prog. Theor. Phys. 80, 1041 (1988).
  4. K. Enqvist, S. Nurmi, D. Podolsky and G. I. Rigopoulos, JCAP 0804, 025 (2008) [arXiv: 0802.0395 [astro-ph]].
  5. J. B. Hartle and S. W. Hawking, Phys. Rev. D 28, 2960 (1983).
  6. A. D. Linde, Sov. Phys. JETP 60, 211 (1984) [Zh. Eksp. Teor. Fiz. 87, 369 (1984)]; A. D. Linde, Lett. Nuovo Cim. 39, 401 (1984); A. Vilenkin, Phys. Rev. D 30, 509 (1984); A. Vilenkin, Phys. Rev. D 33, 3560 (1986).
  7. D. Podolsky and K. Enqvist, arXiv: 0704.0144 [hep-th].
  8. D. I. Podolsky, J. Majumder and N. Jokela, JCAP 0805, 024 (2008) [arXiv: 0804.2263 [hep-th]].
  9. A. Kamenev, cond-mat/0412296, cond-mat/0109316; L.P. Kadanoff and G. Baym, Quantum Statistical Mechanics, W.A. Benjamin, New York, 1962.
  10. A. D. Linde, D. A. Linde and A. Mezhlumian, Phys. Rev. D 49, 1783 (1994) [gr-qc/9306035]; J. Garcia-Bellido and A. D. Linde, Phys. Rev. D 51, 429 (1995) [hep-th/9408023]; A. Vilenkin, Phys. Rev. D 52, 3365 (1995) [gr-qc/9505031]; A. H. Guth, Phys. Rept. 333, 555 (2000) [astro-ph/0002156]; M. Tegmark, JCAP 0504, 001 (2005) [astro-ph/0410281].
  11. Sajeev John, H. Sompolinsky and Michael J. Stephen, Phys. Rev. B 27, 5592 (1983).
  12. Ia. G. Sinai, in Proceedings of the Berlin Conference on Mathematical Problems in Theoretical Physics, eds. R. Schrader, R. Seiler, and D. A. Ohlenbrock, Springer, Berlin, 1982, p. 12.
  13. J. Garriga and A. Vilenkin, Phys. Rev. D 57, 2230 (1998) [astro-ph/9707292].
  14. A. S. Goncharov, A. D. Linde, and V. F. Mukhanov, Int. J. Mod. Phys. A 2, 561 (1987); M. Mijic, Phys. Rev. D 42, 2469 (1990).
  15. A. Aguirre, S. Gratton, and M. C. Johnson, Phys. Rev. D 75, 123501 (2007) [hep-th/0611221]; S. Winitzki, Lect. Notes Phys. 738, 157 (2008) [gr-qc/0612164]; A. Linde, JCAP 0706, 017 (2007) [arXiv: 0705.1160 [hep-th]]; S. Winitzki, Phys. Rev. D 78, 043501 (2008) [arXiv: 0803.1300 [gr-qc]].
  16. J. Garriga, D. Schwartz-Perlov, A. Vilenkin, and S. Winitzki, JCAP 0601, 017 (2006) [hep-th/0509184]; R. Easther, E. A. Lim, and M. R. Martin, JCAP 0603, 016 (2006) [astro-ph/0511233]; A. Vilenkin, J. Phys. A 40, 6777 (2007) [hep-th/0609193].
For more information about this paper please visit Springer's Home Page of this paper.



Back to The Contents Page