Einstein-Yang-Mills cosmic chiral vortices

Yu.P. Rybakov1

Abstract

Cylindrically symmetric self-gravitating configurations of string (vortex) type are considered within the framework of the chiral SU(2) model with the inclusion of the Yang-Mills proper gauge field. In the approximation of a large topological charge N, solutions to the field equations are found, the magnetic field of the vortex being longitudinal. The energy and the toroidal moment of a closed vortex configuration are estimated.

References

  1. A. Vilenkin and E. P. S. Shellard, Cosmic Strings and Other Topological Defects (Cambridge University Press, Cambridge, 1994).
  2. M. B. Hindmarsh and T. W. B. Kibble, Rep. Prog. Phys. 58, 477 (1995).
  3. Ya. B. Zel'dovich, Mon. Not. Roy. Astron. Soc. Lond. 192, 663 (1980).
  4. A. Vilenkin, Phys. Rev. Lett. 46, 1169 (1981).
  5. Yu. P. Rybakov, Physics of Atomic Nuclei 68, 1042 (2005).
  6. Yu. P. Rybakov and I. S. Ivanova, Physics of Atomic Nuclei 70, 1313 (2007).
  7. Yu. P. Rybakov, A. M. Tarabay, and I. G. Chugunov, Physics of Atomic Nuclei 63, 664 (2000).
  8. A. Patani, M. Schlindwein, and Q. Shafi, J. of Physics, ser. A: Math. & Gen. 9, 1513 (1976).
  9. R. Palais, Comm. Math. Phys. 69, 19 (1979).
  10. R. H. Hobart, Proc. Phys. Soc. 82, part 2, No. 526, P. 201 (1963).
  11. G. H. Derrick, J. Math. Phys. 5, No. 9, P. 1252 (1964).
  12. T. Regge and C. Teitelboim, Ann. Phys. (N.Y.) 88, 286 (1974).
  13. V. M. Dubovik and V. V. Tugushev, Phys. Rep. 187, No. 4, P. 145 (1990).
For more information about this paper please visit Springer's Home Page of this paper.



Back to The Contents Page