Detection of dark energy near the Milky Way with the Hubble Space Telescope

A.D. Chernin1, I.D. Karachentsev2, P. Teerikorpi3, M.J. Valtonen4, G.G. Byrd5, Yu.N. Efremov6, V.P. Dolgachev7, L.M. Domozhilova8 and D.I. Makarov9

Abstract

The global expansion of the observed Universe is accelerated by cosmic antigravity - this has been found [1, 2] with high-redshift type Ia supernova observations at the very large distances of more than 1000 Mpc, half-way to the observation horizon. Antigravity is produced by enigmatic dark energy which contributes about 3/4 to the total energy of the Universe [1, 2]; this figure is also confirmed by cosmic microwave background (CMB) anisotropy studies [3,4]. Does antigravity act on relatively small scales as well as on global ones? High-accuracy observations of the local expansion flow made with the Hubble Space Telescope enable us to discover antigravity and to estimate dark energy density in the Local Universe at distances of a few Mpc from us. The result is entirely independent of large-distance observations or CMB studies; however, it is compatible with and complementary to them. Together with the results of [1-4], this forms direct observational evidence for antigravity as a universal cosmic phenomenon existing on small and large scales. Antigravity and dark energy are little understood, and elucidating their physical nature provides perhaps the biggest challenge in physical cosmology.

References

  1. A. G Riess, A. V. Filippenko, P. Challis et al., AJ 116, 1009 (1998).
  2. S. Perlmuter, G. Aldering, G. Goldhaber et al., ApJ 517, 565 (1999).
  3. D. N. Spergel et al., ApJS 148, 175 (2003).
  4. D. N. Spergel et al., ApJS 170, 337 (2007).
  5. E. B. Gliner, Sov. Phys. JETP 22, 378 (1966).
  6. I. D. Karachentsev, A. E. Dolphin, R. B. Tully et al., AJ 131, 1361 (2006).
  7. I. D. Karachentsev, M. E. Sharina, E. K. Grebel et al., A&A 352, 399 (1999).
  8. I. D. Karachentsev, M. E. Sharina, A. E. Dolphin et al., A&A bf 385, 21 (2002).
  9. I. D. Karachentsev, M. E. Sharina, A. E. Dolphin, and E. K. Grebel, A&A 408, 111 (2003).
  10. P. Teerikorpi et al., A&A 347, 99 (1999).
  11. A. D. Chernin, P. Teerikorpi, and Yu. V. Baryshev, Adv. Space Res. 31, 459 (2003); A. D. Chernin, Physics-Uspekhi 44, 1099 (2001).
  12. A. D. Chernin, Physics-Uspekhi 51, 267 (2008).
  13. A. D. Chernin, I. D. Karachentsev, M.J. Valtonen et al., A&A 467, 933 (2005); A&A 415, 19 (2004); V. P. Dolgachev, L. M. Domozhilova, and A. D. Chernin, Astr. Rep. 47, 728 (2003).
  14. G. G. Byrd, M. J. Valtonen, M. McCall, and K. Innanen, AJ 107, 2055 (1994).
  15. F. Thim, G. Tammann, A. Saha et al., ApJ 590, 256 (2003).
  16. A. Sandage, G. Tamman, and B. Reindl, A&A 424, 43 (2004).
  17. A. Sandage, G. Tamman, and A. Saha, ApJ 653, 843 (2006).
  18. A. Sandage, ApJ 307, 1 (1986); ApJ 527, 479 (1999).
  19. I. D. Karachentsev, A. D. Chernin, and P. Teerikorpi, Astrofizika bf 46, 491 (2003).
  20. E. Hubble, The Realm of the Nebulae (Oxford: Oxford Univ. Press, 1936).
  21. S. van den Bergh, AJ 124, 782 (2002).
  22. S. van den Bergh, ApJ 559, L113 (2001).
  23. A. D. Chernin, I. D. Karachentsev, M. J. Valtonen et al., Astrophys. 50, 405 (2007).
  24. A. D. Chernin, I. D. Karachentsev, M. J. Valtonen et al. A&AT 26, 275 (2007).
  25. K. Nagamine, R. Cen, and J. P. Ostriker, Bull. Amer. Astron. Soc. 31, 1393 (1999).
  26. J. P. Ostriker and Y. Suto, ApJ bf 348, 378 (1990).
  27. A. V. Maccio, F. Governato, and C. Horellou, MNRAS 359, 941 (2005).
  28. I. D. Karachentsev and O. G. Kashibadze, MNRAS (2010) (in press).
  29. A. D. Chernin, I. D. Karachentsev, O. G. Kashibadze et al. (in preparation).
  30. I. D. Karachentsev et al., MNRAS 393, 126 (2009).
For more information about this paper please visit Springer's Home Page of this paper.



Back to The Contents Page