On anisotropic Gauss-Bonnet cosmologies in (n + 1) dimensions, governed by an n-dimensional Finslerian 4-metric

V.D. Ivashchuk1

Abstract

The (n + 1)-dimensional Einstein-Gauss-Bonnet (EGB) model is considered. For diagonal cosmological metrics, the equations of motion are written as a set of Lagrange equations with the effective Lagrangian containing two "minisuperspace" metrics on Rn: a 2-metric of pseudo-Euclidean signature and a Finslerian 4-metric proportional to the n-dimensional Berwald-Moor 4-metric. For the case of the "pure" Gauss-Bonnet model, two exact solutions are presented, those with power-law and exponential dependences of the scale factors (w.r.t. the synchronous time variable) are presented. (The power-law solution was considered earlier by N. Deruelle, A. Toporensky, P. Tretyakov, and S. Pavluchenko.) In the case of EGB cosmology, it is shown that for any nontrivial solution with an exponential dependence of scale factors, ai(t) = Ai exp(vi t), there are no more than three different numbers among v1,...,vn.

References

  1. D. Gross and E. Witten, Nucl. Phys. B 277, 1 (1986). D. J. Gross and J. H. Sloan, Nucl. Phys. B 291, 41 (1987). R. R. Metsaev and A. A. Tseytlin, Phys. Lett. B 191, 354 (1987). R. R. Metsaev and A. A. Tseytlin, Nucl. Phys. B 293, 385 (1987).
  2. B. Zwiebach, Phys. Lett. B 156, 315 (1985).
  3. S. Nojiri and S. D. Odintsov, Int. J. Geom. Meth. Mod. Phys. 4, 115-146 (2007); hep-th/0601213.
  4. G. Cognola, E. Elizalde, S. Nojiri, S.D. Odintsov, and S. Zerbini, One-loop effective action for non-local modified Gauss-Bonnet gravity in de Sitter space, arXiv: 0905.0543.
  5. N. Deruelle, Nucl. Phys. B 327, 253-266 (1989).
  6. H. Ishihara, Phys. Lett. B 179, 217 (1986).
  7. E. Elizalde, A. N. Makarenko, V. V. Obukhov, K. E. Osetrin, and A.E. Filippov, Phys. Lett. B 644, 1-6 (2007); hep-th/061121.
  8. K. Bamba, Z.-K. Guo, and N. Ohta, Prog. Theor. Phys. 118, 879-892 (2007), arXiv: 0707.4334.
  9. A. Toporensky and P. Tretyakov, Grav. Cosmol. 13, 207-210 (2007); arXiv: 0705.1346.
  10. I. V. Kirnos, A. N. Makarenko, S. A. Pavluchenko, and A. V. Toporensky, The nature of singularity in multidimensional anisotropic Gauss-Bonnet cosmology with a perfect fluid, arXiv: 0906.0140.
  11. S. A. Pavluchenko and A. V. Toporensky, Mod. Phys. Lett. A 24, 513-521 (2009).
  12. I. V. Kirnos and A. N. Makarenko, Accelerating cosmologies in Lovelock gravity with dilaton, arXiv: 0903.0083.
  13. M. Kowalski, D. Rubin et al., Improved cosmological constraints from new, old and combined supernova datasets, arXiv: 0804.4142.
  14. D. G. Boulware and S. Deser, Phys. Rev. Lett. 55, 2656 (1985); J. T. Wheeler, Nucl. Phys. B 268, 737 (1986).
  15. J. T. Wheeler, Nucl. Phys. B 273, 732 (1986); D. L. Wiltshire, Phys. Lett. B 169, 36 (1986); R. G. Cai, Phys. Rev. D 65, 084014 (2002); M. Cvetic, S. Nojiri, and S. D. Odintsov, Nucl. Phys. B 628, 295 (2002).
  16. C. Garraffo and G. Giribet, Mod. Phys. Lett. A 23, 1801 (2008), arXiv: 0805.3575; C. Charmousis, Lect. Notes Phys. 769, 299 (2009), arXiv: 0805.0568.
  17. K. A. Bronnikov, S. A. Kononogov, and V. N. Melnikov, Gen. Rel. Grav. 38, 1215-1232 (2006); arXiv: gr-qc/0601114.
  18. E. Kasner, Amer. J. Math. 3, 217 (1921).
  19. C. Lanczos, Z. Phys. 73, 147 (1932); Ann. Math. 39, 842 (1938).
  20. S. A. Pavluchenko, On the general features of Bianchi-I cosmological models in Lovelock gravity, arXiv: 0906.0141.
  21. D. Lovelock, J. Math. Phys. 12, No. 3, 498-501 (1971).
  22. V. D. Ivashchuk, On cosmological type solutions in multidimensional model with Gauss-Bonnet term, submitted to IJGMMP.
  23. L. Berwald, Ann. Math. 48, 755-781 (1947).
  24. A. Moor, Erganzung, Acta Math. 91, 187-188 (1954).
  25. H. Shimada, On Finsler spaces with the metric..., Tensor N.S. 33, 365-372 (1979).
  26. G. S. Asanov and S. F. Ponomarenko, Finsler bundle on space-time, associated gauge fields and connections, Shtiintsa, Kishinyov, 1988 (in Russian).
  27. G. Bogoslovsky, SIGMA 4, 045, 21 pages, (2008); arXiv: 0712.1718.
  28. G. I. Garas'ko and D. G. Pavlov, Construction of the pseudo-Riemannian geometry on the base of the Berwald-Moor geometry, math-ph/0609009.
  29. V. Baukh and A. Zhuk, Phys Rev. D 73, 104016 (2006).
  30. V. D. Ivashchuk, S. A. Kononogov, and V. N. Melnikov, Grav. Cosmol. 14, 235-240 (2008); arXiv: 0901.0025.
  31. K. A. Bronnikov, M. A. Grebeniuk, V. D. Ivashchuk, and V. N. Melnikov, Grav. Cosmol. 3, 105-112 (1997), gr-qc/9709006; see also references therein.
  32. V. A. Belinskii, E. M. Lifshitz, and I. M. Khalatnikov, Uspekhi Fiz. Nauk 102, 463 (1970); Adv. Phys. 31, 639 (1982).
  33. J. Demaret, M. Henneaux and P. Spindel, Phys. Lett. B 164, 27 (1985).
  34. V. D. Ivashchuk, A. A. Kirillov and V. N. Melnikov, Izv. Vuzov (Fizika) 11, 107-111 (1994) [Russian Physics Journal 37, 1102 (1994)]; Pis'ma ZhETF 60, 225-229 (1994) [JETP Lett. 60, 235 (1994)].
  35. V. D. Ivashchuk and V. N. Melnikov, Class. Quantum Grav. 12, 809 (1995), gr-qc/9407028; J. Math. Phys. 41, 6341-6363 (2000); hep-th/9904077.
  36. T. Damour and M. Henneaux, Phys. Rev. Lett. 85, 920 (2000); hep-th/0003139.
  37. T. Damour, M. Henneaux, and H. Nicolai, topical review, Class. Quantum Grav. 20, R145-R200 (2003); hep-th/0212256.
  38. V. D. Ivashchuk and V. N. Melnikov, Grav. Cosmol. 15, 49-58 (2009); arXiv: 0811.2786.
  39. T. Damour and H. Nicolai, Class. Quantum Grav. 22, 2849-2879 (2005).
For more information about this paper please visit Springer's Home Page of this paper.



Back to The Contents Page