Fomin's conception of quantum cosmogenesis

M. Szydlowski1 and J. Golbiak2


The main aim of this paper is to extend the early approach to quantum cosmogenesis provided by Fomin. His approach was developed independently of the well-known Tryon description of creation of a closed universe as a process of quantum vacuum fluctuation. We apply Fomin's concept to derive the cosmological observables. We argue that Fomin's idea from his work of 1973, in contrast to Tryon's one, has an impact on the current Universe models, and the proposed extension of his theory can now be tested by distant SNIa supernovae. Fomin's idea of Universe creation is based on an intersection of two fundamental theories: general relativity and quantum field theory with the contemporary cosmological models with dark energy. As a result of comparison with contemporary approaches concerning dark energy, we have found out that Fomin's idea appears in the context of explaining the present acceleration of the Universe: cosmological models with decaying vacuum. Contemporary it appears in the form of a Ricci-scalar dark energy connected with the holographic principle. We also show that Fomin's model admits a bounce instead of an initial singularity. We demonstrate that Fomin's model of cosmogenesis can be simulated, and using the SNIa data, the values of model parameters are in agreement with observations.


  1. E. Harrison, Cosmology - the Science of the Universe (Cambridge University Press, Cambridge, 2000).
  2. E. P. Tryon, Nature (London) 246, 396 (1973).
  3. E. P. Tryon, New Scientist 8, 14 (1984).
  4. P. I. Fomin (1973), preprint ITF-73-137R.
  5. P. I. Fomin, Dokl. Akad. Nauk Ukr. SSR 9A, 831 (1975).
  6. A. Vilenkin, Phys. Rev. D30, 509 (1984).
  7. G. McCabe, Stud. Hist. Philos. Mod. Phys. 35, 549 (2004), Arxiv: gr-qc/0503028.
  8. G. McCabe, Stud. Hist. Philos. Mod. Phys. 36, 67 (2005), Arxiv: gr-qc/0503029.
  9. J. Garecki (2005), Arxiv: gr-qc/0510114.
  10. M. Szydlowski and W. Czaja, Phys. Rev. D69, 083507 (2004), Arxiv: astro-ph/0309191.
  11. M. Szydlowski and W. Czaja, Phys. Rev. D69, 083518 (2004), Arxiv: gr-qc/0305033.
  12. L. J. Garay, Int. J. Mod. Phys. A10, 145 (1995), Arxiv: gr-qc/9403008.
  13. R. G. Vishwakarma, Class. Quant. Grav. 19, 4747 (2002), Arxiv: gr-qc/0205075.
  14. J. M. Overduin and F. I. Cooperstock, Phys. Rev. D58, 043506 (1998), Arxiv: astro-ph/9805260.
  15. U. Alam, V. Sahni, T. D. Saini, and A. A. Starobinsky (2004), Arxiv: astro-ph/0406672.
  16. A. Babic, B. Guberina, R. Horvat, and H. Stefancic, Phys. Rev. D71, 124041 (2005), Arxiv: astro-ph/0407572.
  17. S. Ray and U. Mukhopadhyay, Grav. Cosmol. 13, 142 (2007), Arxiv: astro-ph/0407295.
  18. R. Nakamura, M.-a. Hashimoto, and K. Ichiki, PoS NIC-IX, 149 (2006), Arxiv: astro-ph/0611258.
  19. A. G. Riess et al. (Supernova Search Team), Astrophys. J. 607, 665 (2004), Arxiv: astro-ph/0402512.
  20. M. Szydlowski, W. Godlowski, A. Krawiec, and J. Golbiak, Phys. Rev. D72, 063504 (2005), Arxiv: astro-ph/0504464.
  21. K. Freese and M. Lewis, Phys. Lett. B540, 1 (2002), Arxiv: astro-ph/0201229.
  22. W. Godlowski, M. Szydlowski, and A. Krawiec, Astrophys. J. 605, 599 (2004), Arxiv: astro-ph/0309569.
  23. C. Gao, F. Wu, X. Chen, and Y.-G. Shen, Phys. Rev. 79, 043511 (2009), Arxiv: 0712.1394.
  24. C.-J. Feng, Phys. Lett. B670, 231 (2008), Arxiv: 0809.2502.
  25. K. Y. Kim, H. W. Lee, and Y. S. Myung (2008), Arxiv: 0812.4098.
  26. X. Zhang, Phys. Rev. D79, 103509 (2009), Arxiv: 0901.2262.
  27. J. Overduin and H.-J. Fahr, Found. Phys. Lett. 16, 119 (2003).
  28. A. Haas, Phys. Rev. 49, 411 (1936).
  29. P. Jordan, Die Herkunft der Sterne (Wissenschaftliche Verlagsgessellschaft, Stuttgart, 1947).
  30. E. Komatsu et al. (WMAP), Astrophys. J. Suppl. 180, 330 (2009), Arxiv: 0803.0547.
  31. K. R. Popper, The Logic of Scientific Discovery (Routledge, London, 2002).
For more information about this paper please visit Springer's Home Page of this paper.

Back to The Contents Page