Collapse dynamics of a star of dark matter and dark energy

S. Chakraborty and T. Bandyopadhyay1

Abstract

We study the collapse dynamics of an inhomogeneous spherically symmetric star made of dark matter (DM) and dark energy (DE). The dark matter is taken in the form of a dust cloud while an anisotropic fluid is chosen as the candidate dark energy. It is investigated how dark energy modifies the collapsing process, and it is examined whether dark energy has any effect on the Cosmic Censorship Conjecture. The collapsing star is assumed to be of finite radius, and the space-time is divided into three distinct regions S and V, where S represents the boundary of the star and V-(V+) denotes the interior (exterior) of the star. The junction conditions for matching V over S are specified. The role of Dark energy in the formation of an apparent horizon is studied, and the central singularity is analyzed.

References

  1. J. R. Oppenheimer and H. Snyder, Phys. Rev. 56, 455 (1939).
  2. P. S. Joshi and I. H. Dwivedi, Commun. Math. Phys. 166, 117 (1994); Class. Quant. Grav. 16 41 (1999).
  3. K. Lake, Phys. Rev. Lett. 68, 3129 (1992).
  4. A. Ori and T. Piran, Phys. Rev. Lett. 59, 2137 (1987).
  5. T. Harada, Phys. Rev. D 58, 104015 (1998).
  6. U. Debnath, A. Banerjee and S. Chakraborty, Int. J. Mod. Phys. D 12, 1255 (2003).
  7. P. S. Joshi, Global Aspects in Gravitation and Cosmology (Oxford Univ Press, Oxford, 1993); see also the recent reviews: P. S. Joshi, Mod. Phys. Lett. A 17, 1067 (2002); A. Krolak, Prog. Theor. Phys. Suppl. 136, 45 (1999); R. Penrose, in: Black Holes and Relativistic Stars (ed. R. Wald, Univ. of Chicago Press, Chicago, 1998).
  8. U. Debnath, Subenoy Chakraborty and N. Dadhich, Int. J. Mod. Phys. D 14, 1761 (2005); Subenoy Chakraborty and S. Chakraborty, Int. J. Mod. Phys. D (2005) (in press); Mod. Phys. Lett. A (2005) (in press). exact refs???
  9. H. Muller zum Hagen, P. Yodzis and H. Seifert, Commun. Math. Phys. 37, 29 (1974).
  10. L. Herrera and N. O. Santos, Phys. Rep. 286, 53 (1997).
  11. T. Harada, H. Iguchi and K. Nakao, Prog. Theor. Phys. 107, 449 (2002).
  12. Subenoy Chakraborty, S. Chakraborty and U. Debnath, Int. J. Mod. Phys. D 14, 1707 (2005).
  13. A. Mahajan, R. Goswami and P. S. Joshi, Class. Quant. Grav 22, 271 (2005); R. Goswami and P. S. Joshi, Class. Quant. Grav. 19 5229 (2002); T. Harada, K. Nakao, and H. Iguchi, Class. Quant. Grav. 16 2785 (1999); S. M. C. V. Goncalves, S. Jhingan and G. Magli, Phys. Rev. D 65 064011 (2002); G. Magli, Class. Quant. Grav. 14 1937 (1997); 15, 3215 (1998).
  14. S. S. Deshingkar, S. Jhingan, A. Chamorro and P. S. Joshi, Phys. Rev. D 63, 124005 (2001); M. Cissoko, J. C. Fabris, J. Gariel, G. L. Denmat and N. O. Santos, gr-qc/9809057; D. Markovic and S. L. Shapiro, Phys. Rev. D 61, 084029 (2000); K. Lake, Phys. Rev. D 62, 027301 (2000).
  15. U. Debnath, S. Chakraborty and J. D. Barrow, Gen. Rel. Grav. 36 231 (2004).
  16. T. Arun Madhav, R. Goswami and P. S. Joshi, Phys. Rev. D 72 084029 (2005).
  17. P. M. Garnavich et al. (Hi-Z Supernova Team Collaboration), Astrophys. J 493, L53 (1998); S. Perlmutter et al (Supernova Cosmology Project Collaboration), Astrophys.J. 483, 565 (1997); Nature (London), 391, 51 (1998).
  18. D. N. Spergel et al., Astrophys. J. Suppl. 148, 175 (2003).
  19. M. E. Cahill and G. C. McVittie, J. Math. Phys. (N.Y.) 11, 1382 (1970).
  20. S. W. Hawking and G. F. R. Ellis, The Large-Scale Structure of Space-Time (Cambridge Univ. Press, Cambridge, UK, 1973).
  21. P. S. Joshi, Phys. Rev. D 75, 044005 (2007).
  22. W. Israel, Nuovo Cim. B 44, 1 (1966); G. Darmois, Memorial des Sciences Mathematiques (Gauthier-Villars, Paris, 1927), Fasc. 25; W. B. Bonnor and P. A. Vickers, Gen. Rel. Grav. 13 29 (1981).
  23. A. Einstein, Ann. Math. 40, 4922 (1939); B. K. Datta, Gen. Rel. Grav. 1 19 (1970); H. Bondi, Gen. Rel. Grav. 2 (1971). The Einstein cluster is a spherically symmetric cluster of rotating particles having non-zero angular momenta. A mean effect of the angular momentum creates a nonzero tangential stress within the cloud.
For more information about this paper please visit Springer's Home Page of this paper.



Back to The Contents Page