Fermion fields in Einstein-Cartan theory and the accelerated-decelerated transition in a primordial universe

M.O. Ribas1 and G.M. Kremer2

Abstract

The accelerated-decelerated transition in a primordial Universe is investigated by using the dynamics of fermion fields within the context of the Einstein-Cartan theory, where, apart from the curvature, the space-time is also described by a torsion field. The model analyzed here has only a fermion field as a source of the gravitational field. The term associated with the spin of the fermion field plays the role of an inflaton which contributes to an accelerated regime whereas the one related to the fermion mass behaves as a matter field and is responsible for a decelerated regime. Hence, by taking into account the spin of a massive fermion field, it is possible to characterize the transition from an accelerated to a decelerated period of the primordial Universe.

References

  1. P. J. E. Peebles, Principles of Physical Cosmology (Princeton Series in Physics, Princeton, 1993).
  2. A. D. Linde, Particle Physics as Inflationary Cosmology (Harwood Academic Publisher, Chur, 1990).
  3. A. H. Guth, Phys. Rev. D 23, 347 (1981).
  4. A. Albrecht and P. J. Steinhardt, Phys. Rev. Lett. 48, 1220 (1982).
  5. A. D. Linde, Phys. Lett. B. 108, 389 (1982).
  6. M. O. Ribas, F. P. Devecchi and G. M. Kremer, Phys. Rev. D 72, 123502 (2005).
  7. M. O. Ribas, F. P. Devecchi and G. M. Kremer, EPL 81, 19001 (2008).
  8. B. Saha, Phys. Rev. D 74, 124030 (2006).
  9. L. P. Chimento, F. P. Devecchi, M. Forte and G. M. Kremer, Class. Quantum Grav. 25, 085007 (2008).
  10. R. C. de Souza and G. M. Kremer, Class. Quantum Grav. 25, 225006 (2008).
  11. M. Gasperini, Phys. Rev. Lett. 56, 2873 (1986).
  12. M. Gasperini, Gen. Rel. Grav. 3 0, 1703 (1998).
  13. C. G. Bohmer, Acta Phys. Polon. B 3 6, 2841 (2005).
  14. L. C. Garcia de Andrade, Int. J. Mod. Phys. D 8, 725 (1999).
  15. C. G. Bohmer, Class. Quant. Grav. 21, 1119 (2004).
  16. W. Kopczynski, Phys. Lett. A 39, 219 (1972).
  17. W. Kopczynski, Phys. Lett. A 43, 63 (1973).
  18. S. Capozziello, R. Cianci, C. Stornaiolo and S. Vignolo, Phys. Scripta 78, 065010 (2008).
  19. S. Capozziello, Mod. Phys. Lett. A 17, 1621 (2002).
  20. A. V. Minkevich, A. S. Garkun and V. I. Kudin, Comment on "Torsion Cosmology and Accelerating Universe", gr-qc/08111430.
  21. C. G. Bohmer and J. Burnett, Phys.Rev. D 78, 104001 (2008).
  22. F. W. Hehl, P. V. Heyde, and G. D. Kerlick, Phys. Rev. D 10, 1066 (1974).
  23. F. W. Hehl, P. V. Heyde, and G. D. Kerlick, Rev. Mod. Phys. 48, 393 (1976).
  24. F. W. Hehl and P. V. Heyde, Ann. Inst. Henri Poincare 19, 179 (1973).
  25. W. Arkuszewski, W. Kopczynskiand, and V. N. Ponomariev, Ann. Inst. Henri Poincare 21, 89 (1974).
  26. T. Watanabe and M. Hayashi, General Relativity with Torsion, gr-qc/0409029.
  27. H. I. Arcos and J. G. Pereira, Int. J. Mod. Phys. D 13, 807 (2004).
  28. K. F. Shie, J. M. Nester, and H. J. Yo, Phys. Rev. D 78, 023522 (2008).
  29. T. Watanabe, Dirac-field model of inflation in Einstein-Cartan theory, astro-ph/0902.1392.
For more information about this paper please visit Springer's Home Page of this paper.



Back to The Contents Page