The Hamiltonian formulation of tetrad gravity: Three-dimensional case

A.M. Frolov1, N. Kiriushcheva2, S.V. Kuzmin3

Abstract

The Hamiltonian formulation of tetrad gravity in any dimension higher than two, using its first-order form where tetrads and spin connections are treated as independent variables, is discussed, and the complete solution of the three-dimensional case is given. For the first time, applying the methods of constrained dynamics, the Hamiltonian and constraints are explicitly derived and the algebra of Poisson brackets among all constraints is calculated. The algebra of Poisson brackets, among first-class secondary constraints, locally coincides with Lie algebra of the ISO(2,1) Poincare group. All the first-class constraints of this formulation, according to the Dirac conjecture and using the Castellani procedure, allow us to unambiguously derive the generator of gauge transformations and find the gauge transformations of the tetrads and spin connections which turn out to be the same as found by Witten without recourse to the Hamiltonian methods [Nucl. Phys. B 311, 46 (1988)]. The gauge symmetry of the tetrad gravity generated by the Lie algebra of constraints is compared with another invariance, diffeomorphism. Some conclusions about the Hamiltonian formulation in higher dimensions are briefly discussed; in particular, that diffeomorphism invariance is not derivable as a gauge symmetry from the Hamiltonian formulation of tetrad gravity in any dimension where tetrads and spin connections are used as independent variables.

References

  1. P. A. M. Dirac, Lectures on Quantum Mechanics (Belfer Graduate School of Sciences, Yeshiva University, New York, 1964).
  2. K. Sundermeyer, Constrained Dynamics, Lecture Notes in Physics, vol. 169, Springer, Berlin, 1982.
  3. D. M. Gitman and I. V. Tyutin, Quantization of Fields with Constraints (Springer, Berlin, 1990).
  4. R. Gambini and J. Pullin, Loops, Knots, Gauge Theories and Quantum gravity (Cambridge University Press, Cambridge, 1996).
  5. C. Rovelli, Quantum Gravity (Cambridge University Press, Cambridge, 2004).
  6. T. Thiemann, Modern canonical quantum general relativity (Cambridge University Press, Cambridge, 2007).
  7. N. Kiriushcheva, S. V. Kuzmin, C. Racknor, and S. R. Valluri, Phys. Lett. A 372, 5101-5105 (2008).
  8. N. Kiriushcheva and S. V. Kuzmin, arXiv:0809.0097.
  9. A. M. Frolov, N. Kiriushcheva, and S. V. Kuzmin, arXiv:0809.1198.
  10. C. J. Isham and K. V. Kuchar, Ann. Phys. 164, 316-333 (1985).
  11. S. Deser and C. Isham, Phys. Rev. D 14, 2505-2510 (1976).
  12. E. Witten, Nucl. Phys. B 311, 46-78 (1988).
  13. S. Carlip, Phys. Rev. D 42, 2647-2654 (1990).
  14. D. Grensing and G. Grensing, Phys. Pev. D 28, 286-296 (1983).
  15. S. A. Ali, C. Cafaro, S. Capozziello, and Ch. Corda, Int. J. Theor. Phys. 48, 3426-3448 (2009).
  16. J. M. Charap, M. Henneaux, and J.E. Nelson, Class. Quantum Grav. 5, 1405-1414 (1988).
  17. H.-J. Matschull, Class. Quant. Grav. 16, 2599-2609 (1999).
  18. H.-J. Matschull, Class. Quant. Grav. 12, 2621-2703 (1995).
  19. S. Carlip, Living Rev. Relativity 8, 1-63 (2005); http://www.livingreviews.org/lrr-2005-1.
  20. S. Carlip, Quantum Gravity in 2+1 Dimensions (Cambridge University Press, Cambridge, 1998).
  21. M. Blagojevic and B. Cvetkovic, in " Trends in General Relativity and Quantum Cosmology" (vol. 2, ed. C.V. Benton, Nova Science Publisher, New York, 2006, pp. 85-107); gr-qc/0412134.
  22. M. Blagojevic, Gravitation and Gauge Symmetries (Institute of Physics Publishing, Bristol and Philadelphia, 2002).
  23. N. Kiriushcheva and S.V. Kuzmin, Ann. Phys. 321, 958-986 (2006).
  24. L. Castellani, Ann. Phys. 143, 357-371 (1982).
  25. M. Henneaux, C. Teitelboim and, J. Zanelli, Nucl. Phys. B 332, 169-188 (1990).
  26. R. Banerjee, H. J. Rothe, and K. D. Rothe, Phys. Lett. B 479, 429-434 (2000).
  27. N. Kiriushcheva and S. V. Kuzmin, arXiv:0912.3396..
  28. R. Utiyama, Phys. Rev. 101, 1597-1607 (1956).
  29. H. Weyl, Physics 15, 323-334 (1929).
  30. C. N. Yang and R. L. Mills, Phys. Rev. 96, 191-195 (1954).
  31. T. W. B. Kibble, Journal of Math. Phys. 2, 212-221 (1961).
  32. B. N. Frolov, Grav. Cosmol. 10, 116-120 (2004).
  33. O. V. Barbourova, B. N. Frolov, and V. Ch. Zhukovsky, Phys. Rev. D 74, 064012 (2006).
  34. J. F. Plebanski, J. Math. Phys. 18, 2511-2520 (1977).
  35. N. Kiriushcheva and S. V. Kuzmin, arXiv:0907.1553.
  36. N. Kiriushcheva and S. V. Kuzmin, arXiv:0907.1999 (to appear in Gen. Rel. Grav.).
  37. N. Kiriushcheva and S. V. Kuzmin, arXiv:0912.5490.
  38. J. Schwinger, Phys. Rev. 130, 1253-1258 (1963).
  39. L. Castellani, P. van Nieuwenhuizen, and M. Pilati, Phys. Rev. D 26, 352367 (1982).
  40. R. N. Ghalati, N. Kiriushcheva, and S. V. Kuzmin, Mod. Phys. Lett. A 22, 17-28 (2007).
  41. S. V. Kuzmin and D. G. C. McKeon, Ann. Phys. 138,, 495-496 (2005).
  42. L. D. Landau and E. M. Lifshitz, The Classical Theory of Fields (fourth ed., Pergamon Press, Oxford, 1975).
  43. M. Carmeli, Classical Fields: General Relativity and Gauge Theory (World Scientific, New Jersey, 2001).
  44. A. Einstein, Sitzungsber. preuss. Akad. Wiss., phys.-math. K1, 217-221 (1928), and in The Complete Collection of Scientific Papers (Nauka, Moscow, 1966, vol. 2, pp. 223-228); English translation is available from: http:/www.lrz-muenchen.de/'aunzicker/ae1930.htm, and A. Unzicker, T. Case, arXiv:physics/0503046.
For more information about this paper please visit Springer's Home Page of this paper.



Back to The Contents Page