A note on proper affine vector fields in non-static plane symmetric space-times

G. Shabbir1


The most general form of non-static plane symmetric space-times is considered to study proper affine vector fields by using holonomy and decomposability, the rank of the 6 ×6 Riemann matrix and direct integration techniques. Studying proper affine vector fields in each nonstatic case of the above space-times it is shown that very special classes of the above space-times admit proper affine vector fields. We also discuss the Lie algebra in each case.


  1. J. F. Schell, J. Math. Phys. 2, 202 (1961).
  2. G. Shabbir and N. Ahmed, Applied and Computational Mathematics (International journal), 4, 75 (2005).
  3. G. S. Hall, Symmetries and Curvature structure in general relativity (World Scientific, 2004).
  4. G. Shabbir, Acta Phys. Pol. B 40, 3 (2009).
  5. G. S. Hall, D. J. Low, and J. R. Pulham, J. Math. Phys. 35, 5930 (1994).
  6. G. S. Hall and W. Key, J. Math. Phys. 29, 420 (1988).
  7. H. Stephani, D. Kramer, M. A. H. MacCallum, C. Hoenselears, and E. Herlt, Exact Solutions of Einstein's Field Equations (Cambridge University Press, 2003).
  8. G. Shabbir and N. Ahmed, Int. J. Mod. Math. 4, 201 (2009).
  9. A. V. Aminova, Sbornik Mathematics, 186, 1711 (1995).
  10. A. V. Aminova, Russian Math. Surveys 48, 105 (1993).
  11. A. V. Aminova, Russian Math. Surveys 50, 69 (1995).
  12. A. V. Aminova, J. Math. Sciences 113, 367 (2003).
  13. R. Maartens, J. Math. Phys. 28, 2051 (1987).
  14. A. V. Aminova and N. A. Aminova, Sbornik Mathematics 197, 951 (2006).
For more information about this paper please visit Springer's Home Page of this paper.

Back to The Contents Page