# A note on proper affine vector fields in non-static plane symmetric space-times

*G. Shabbir*^{1}

(1) Faculty of Engineering Sciences, GIK Institute of Engineering Sciences and Technology, Topi, Swabi, NWFP, Pakistan

### Abstract

The most general form of non-static plane symmetric space-times is considered to study proper affine vector fields by using holonomy and decomposability, the rank of the 6 ×6 Riemann matrix and direct integration techniques. Studying proper affine vector fields in each nonstatic case of the above space-times it is shown that very special classes of the above space-times admit proper affine vector fields. We also discuss the Lie algebra in each case.

### References

- J. F. Schell, J. Math. Phys. 2, 202 (1961).
- G. Shabbir and N. Ahmed, Applied and Computational Mathematics (International journal), 4, 75 (2005).
- G. S. Hall, Symmetries and Curvature structure in general relativity (World Scientific, 2004).
- G. Shabbir, Acta Phys. Pol. B 40, 3 (2009).
- G. S. Hall, D. J. Low, and J. R. Pulham, J. Math. Phys. 35, 5930 (1994).
- G. S. Hall and W. Key, J. Math. Phys. 29, 420 (1988).
- H. Stephani, D. Kramer, M. A. H. MacCallum, C. Hoenselears, and E. Herlt, Exact Solutions of Einstein's Field Equations (Cambridge University Press, 2003).
- G. Shabbir and N. Ahmed, Int. J. Mod. Math. 4, 201 (2009).
- A. V. Aminova, Sbornik Mathematics, 186, 1711 (1995).
- A. V. Aminova, Russian Math. Surveys 48, 105 (1993).
- A. V. Aminova, Russian Math. Surveys 50, 69 (1995).
- A. V. Aminova, J. Math. Sciences 113, 367 (2003).
- R. Maartens, J. Math. Phys. 28, 2051 (1987).
- A. V. Aminova and N. A. Aminova, Sbornik Mathematics 197, 951 (2006).

For more information about this paper please visit Springer's Home Page of this paper.

Back to The Contents Page