Momentum of electromagnetic fields, speed of light in moving media, and the photon mass

G. Spavieri1 and G.T. Gillies2

Abstract

In both the equations for matter and light wave propagation, the momentum of the electromagnetic fields Pe reflects the relevant electromagnetic interaction. As a review of possible applications of wave propagation properties in the scenarios of standard and stochastic electrodynamics, some relevant experiments are described. Moreover, Pe is also the link to the unitary vision of the quantum effects of the Aharonov-Bohm (AB) type, which provide a useful quantum approach for the limit of the photon mass mph. A bench-top experiment based on effects of the AB type that exploit new interferometric techniques, is foreseen to yield the limit mph @ 10-54 g, a value that improves upon the results achieved with other approaches.

References

  1. G. Spavieri and G. T. Gillies, Chin. J. Phys., 45, 12 (2007).
  2. J. H. Hannay, unpubl., Cambridge Univ. Hamilton prize essay (1976); R. J. Cook, H. Fearn, and P. W. Milonni, Am. J. Phys. 63, 705 (1995).
  3. Y. Aharonov and D. Bohm, Phys. Rev. 115, 485 (1959); Y. Aharonov and A. Casher, Phys. Rev. Lett. 53, 319 (1984); G. Spavieri, Phys. Rev. Lett. 81, 1533 (1998); Phys. Rev. A 59, 3194 (1999); V. M. Tkachuk, Phys. Rev. A 62, 052112-1 (2000).
  4. G. Spavieri, Phys. Rev. Lett. 82, 3932 (1999); Phys. Lett. A, 310, 13 (2003); Eur. J. Phys. D, 37, 327 (2006).
  5. G. Spavieri and G. T. Gillies, Nuovo Cimento, B 118, 205 (2003); G. Spavieri, L. Nieves, M. Rodriguez, and G. T. Gillies, Has the last word been said on Classical Electrodynamics? - New Horizons (Rinton Press, USA, 2004), p. 255.
  6. G. Spavieri, G. T. Gillies et al., in: Ether, Spacetime & Cosmology (2009), in press.
  7. J. S. Bell, Speakable and Unspeakable in Quantum Mechanics, (Cambridge Univ. Press, Cambridge, 1988); C. Leubner, K. Aufinger, and P. Krumm, Eur. J. Phys. 13, 170 (1992); F. Selleri, Found. Phys. 26, 641 (1996); Found. Phys. Lett. 18, 325 (2005).
  8. R. de Abreu and V. Guerra, Relativity - Einstein's Lost Frame, (1st ed., Extramuros, Lisboa, 2005); V. Guerra and R. de Abreu, Found. Phys. 36, 1826 (2006); Phys. Lett. A 333, 355 (2004).
  9. M. Consoli and E. Costanzo, Phys. Lett. A 333, 355 (2004), astro-ph/0311576; M. Consoli, A. Pagano, and L. Pappalardo, Phys. Lett. A 318, 292 (2003); M. Consoli, Phys. Rev. D 65, 105017 (2002); Phys. Lett. B 541, 307 (2002); M. Consoli and E. Costanzo, Phys. Lett. A 361, 513 (2007).
  10. R. T. Cahill and K. Kitto, physics/0205070; Apeiron 10, 104 (2003); R.T. Cahill, Apeiron 11, 53 (2004).
  11. D. C. Miller, Rev. Mod. Phys. 5, 203 (1933).
  12. L. Indorato and G. Masotto, Annals of Science 46, 117-163 (1989).
  13. See, for example, the recent review paper on stochastic electrodynamics with spin (SEDS) by G. Cavalleri, F. Barbero, G. Bertazzi, E. Cesaroni, E. Tonni, L. Bosi, G. Spavieri, and G. T. Gillies, Front. Phys. China, 5 (1), 107-122 (2010).
  14. G. Spavieri, Eur. Phys. J. D 39, 157 (2006).
  15. A. J. Fresnel, Ann. Chim. (Phys.) 9, 57 (1818); H. Fizeau, C. R. Acad. Sci. (Paris) 33, 349 (1851).
  16. See: T. H. Boyer, Phys. Rev. D 8, 1667 (1973); X. Zhu and W. C. Henneberger, J. Phys. A 23, 3983 (1990); G. Spavieri, in Refs. [4].
  17. M. Duffy, private comm., Int. Conf. Physical Interpretation of Relativity Theory, 2006.
  18. F. R. Tangherlini, Suppl. Nuovo Cimento 20, 1 (1961); T. Sjodin, Nuovo Cim. B 51, 299 (1979); T. Sjodin and M. F. Podlaha, Lett. Nuovo Cim. 31, 433 (1982); R. Mansouri and R. V. Sexl, Gen. Rel. Grav., 8, 497, 515, 809 (1977).
  19. G. Spavieri, G. T. Gillies, V. Guerra, and R. De Abreu, Eur. Phys. J. D 47, 457463 (2008).
  20. E. Mascart and J. Jamin, Ann. Ec. norm. 3, 336 (1874).
  21. G. Cavalleri and G. Spavieri, Nuovo Cim. A 101, 213 (1989).
  22. E. R. Williams, J. E. Faller, and H. A. Hill, Phys. Rev. Lett. 26, 721 (1971); L. Davis, A.S. Goldhaber, and M. M. Nieto, Phys. Rev. Lett. 35, 1402 (1975); P. A. Franken and G. W. Ampulski, Phys. Rev. Lett, 26, 115 (1971); J. J. Ryan, F. Accetta, and R. H. Austin, Phys. Rev. D, 32, 802 (1985); R. Lakes, Phys. Rev. Lett. 80, 1826 (1998).
  23. J. Luo, L.-C. Tu, Z. K. Hu, and E.-J. Luan, Phys. Rev. Lett. 90, 081801-1 (2003); L.-C. Tu, J. Luo, and G. T. Gillies, Rep. Prog. Phys. 68, 77 (2005).
  24. D. G. Boulware and S. Deser, Phys. Rev. Lett., 63, 2319 (1989).
  25. G. Spavieri, Phys. Lett. A 310, 13 (2003).
  26. G. Spavieri, Eur. J. Phys. D 37, 327 (2006).
  27. K. Sangster, E. A. Hinds, S. M. Barnett, and E. Riis, Phys. Rev. Lett. 71, 3641 (1993); K. Sangster, E. A. Hinds, S. M. Barnett, E. Riis, and A. G. Sinclair, Phys. Rev. A 51, 1776 (1995); see also R.C. Casella, Phys. Rev. Lett. 65, 2217 (1990).
  28. J. P. Dowling, C. P. Williams, and J. D. Franson, Phys. Rev. Lett. 83, 2486 (1999).
  29. G. Spavieri and M. Rodriguez, Phys. Rev. A 75, 052113 (2007).
  30. B. Neyenhuis, D. Christensen, and D. S. Durfee, Phys. Rev. Lett. 99, 200401 (2007).
  31. Z. T. Lu, K. L. Corwin, M. J. Renn, M. H. Anderson, E. A. Cornell, and C. E. Wieman, Phys. Rev. Lett. 77, 3331 (1996).
For more information about this paper please visit Springer's Home Page of this paper.



Back to The Contents Page