A study of the motion of a relativistic continuous medium

S.A. Podosenov1, Jaykov Foukzon2 and A.A. Potapov3

Abstract

The main purpose of the present paper is to give an exact and correct expression describing the properties of the proper length in arbitrary relativistic translationally moving media in Minkowski space. We show, in particular, that the standard solution of Bell's well-known problem [1] must be revised. A new solution has been found, describing the behavior of a finite physical length in the Lagrangian non-inertial reference frame comoving to the medium. This solution is absent in the existing literature. We conclude that, in the case of large enough accelerations a0 and initial distances between some points of the medium, i.e., under the condition u a0L0/c2 >> 1, where c is the speed of light, the calculations presented in some well-known papers (namely, [1, 2, 10-12]) are incorrect and should be revised. For the velocity values u << 1, our results and those of all the enumerated papers coincide.

References

  1. J. S. Bell, Speakable and Unspeakable in Quantum Mechanics (Cambridge University Press, 1993, p. 67).
  2. S. S. Gershtein and A. A. Logunov, J. Bell's Problem. Particle and Nuclear Physics 29, 5th issue (1998).
  3. L. D. Landau and E. M. Lifshitz, Field Theory (Nauka, Moscow, 1973).
  4. P. K. Rashevsky, Riemannian Geometry and Tensor Analysis (GITTL, Moscow, 1953).
  5. S. A. Podosenov, Tetrad Formulation of Motion of an Elastic Medium in Special Relativity, Izv. Vuzov, Fiz. No. 4, 45-54 (1970).
  6. S. A. Podosenov, Relativistic Kinematics of a Deformable Medium in Special Relativity. In: Problemy Terii Gravitatsii. Teor. i Mat. Fiz., 1st issue (VNIIOFI, Moscow, 1972), p. 60-72.
  7. S. A. Podosenov, Space, Time and Classical Fields of Bound Structures (Sputnik publishers, Moscow, 2000).
  8. S. A. Podosenov, A. A. Potapov, and A. A. Sokolov, Impulse Electrodynamics of Wide-Band Radio Systems and the Fields of Bound Structures (Radiotekhnika, Moscow, 2003).
  9. A. A. Logunov, Lectures on Relativity and Gravitation. Modern Analysis of the Problem (Nauka, Moscow, 1987).
  10. D. V. Redzic, Note on Devan-Beran-Bell's spaceship problem, Eur. J. Phys. 29, 11-19 (2008).
  11. D. V. Peregudov, Comments to the paper by Redzic [10] Eur. J. Phys. 29 (2008).
  12. V. L. Ginzburg and Yu. N. Eroshenko, Once Again on the Equivalence Principle, Uspekhi Fiz. Nauk 165, No. 2 (1995).
  13. A. L. Zel'manov, in: Proc. of the 6th Meeting on Cosmogony (AN SSSR publishers, Moscow, 1959).
  14. J. Foukzon, S. A. Podosenov, and A. A. Potapov, Relativistic length expansion in general accelerated system revisited, ArXiv: 0910.2298.
  15. S. A. Podosenov, J. Foukzon, and A. A. Potapov, Bell's Problem and a Study of Electronic Bunches in Linear Colliders, Nelineinyi Mir 7 (8), 612-622 (2009).
  16. J. L. Synge, Relativity: the General Theory (NHPC, Amsterdam, 1960).
  17. S. A. Podosenov, Relativistic Mechanics of a Deformable Medium in Tetrad Formulation, PhD thesis (Peoples' Friendship University, Moscow, 1972).
  18. H. Dehnen, in: Einstein Proceedings 1969-70 (Nauka, Moscow, 1970), p. 140.
For more information about this paper please visit Springer's Home Page of this paper.



Back to The Contents Page