On creating mass/matter by extra dimensions in the Einstein-Gauss-Bonnet gravity

A.N. Petrov1

Abstract

Kaluza-Klein (KK) black hole solutions in the Einstein-Gauss-Bonnet (EGB) gravity in D dimensions obtained in the current series of the works by Maeda, Dadhich and Molina are examined. Interpreting their solutions, the authors claim that mass/matter is created by the extra dimensions. To support this claim, one needs to show that such objects have classically defined masses. We calculate the mass and mass flux for 3D KK black holes in 6D EGB gravity whose properties are sufficiently physically interesting. Superpotentials for arbitrary types of perturbations on arbitrary curved backgrounds, recently obtained by the author, are used, and acceptable mass and mass flux are obtained. A possibility of considering the KK created matter as dark matter in the Universe is discussed.

References

  1. H. Maeda and N. Dadhich, Phys. Rev. D 74, 021501(R) (2006); hep-th/0605031.
  2. H. Maeda and N. Dadhich, Phys. Rev. D 75, 044007 (2007); hep-th/0611188.
  3. N. Dadhich and H. Maeda, Int. J. Mod. Phys. D 17, 513 (2008); arXiv: 0705.2490.
  4. A. Molina and N. Dadhich, Int. J. Mod. Phys. D 18, 599 (2009); arXiv: 0804.1194.
  5. A. A. Starobinsky, Phys. Lett. B 91, 99 (1980).
  6. K. A. Bronnikov, R. V. Konoplich and S. G. Rubin, Class. Quantum Grav. 24, 1261 (2007); gr-qc/0610003.
  7. A. N. Petrov, Class. Quantum Grav. 22, L83 (2005); gr-qc/0504058.
  8. A. N. Petrov, 2-nd chapter in Classical and Quantum Gravity Research (ed. by M. N. Christiansen and T. K. Rasmussen, Nova Science Publishers, N.Y., 2008), 79-160; arXiv: 0705.0019.
  9. A. N. Petrov, Class. Quantum Grav. 26, 135010 (2009); arXiv: 0905.3622.
  10. M. Ba n ados, C. Teitelboim and J. Zanelli, Phys. Rev. Lett. 69, 1849 (1992); hep-th/9204099.
  11. J. Crisostomo J, R. Troncoso and J. Zanelli, Phys. Rev. D 62 084013 (2000); hep-th/0003271.
  12. R.-G. Cai, Phys. Rev. D 65, 084014 (2002); hep-th/01092133.
  13. R. Emparan and H. S. Reall, Living Rev. Rel. 11, 6 (2008); arXiv: 0801.3471.
  14. N. Deruelle, J. Katz and S. Ogushi, Class. Quantum Grav. 21, 1971 (2004); gr-qc/0310098.
  15. H. Bondi, A. W. K. Metzner and M. J. C. Van der Berg, Proc. R. Soc. A London 269, 21 (1962).
  16. J. Katz and G. I. Livshits, Class. Quantum Grav. 25, 175024 (2009); arXiv:0807.3079.
  17. J . Katz, J. Bicak and D. Lynden-Bell, Phys. Rev. D 55 5957 (1997); gr-qc/0504041.
  18. R. Olea, JHEP 0506, 023 (2005); hep-th/0504233.
  19. V. Sahni and A. Starobinsky, Int. J. Mod. Phys. D 9, 373 (2000); astro-ph/9904398.
  20. V. N. Lukash, Cosmological models: theory and observations, astro-ph/0012012.
  21. A. D. Chernin, Usp. Fiz. Nauk 171, 1153 (2001).
  22. T. Padmanabhan, Phys. Rep. 380 235 (2003); hep-th/0212290.
  23. V. Sahni and A. Starobinsky, Int. J. Mod. Phys. D 15, 2105 (2006); astro-ph/0610026.
  24. E. Mikheeva, A. Doroshkevich and V. Lukash, Nuovo Cim. 122B, 1393 (2007); arXiv: 0712.1688.
  25. A. D. Chernin, Usp. Fiz. Nauk 178, 267 (2008).
  26. V. N. Lukash and V. A. Rubakov, Usp. Fiz. Nauk 178, 301 (2008); arXiv: 0807.1635.
  27. T. Nieuwenhuizen, EPL 86, 59001-6 (2009).
  28. Y. K. Ha, Int. J. Mod. Phys. A 24, 3577 (2009); arXiv: 0906.3549.
  29. Ph. von Freud, Ann. of Math. 40, 417 (1939).
  30. A. N. Petrov and J. Katz, Proc. R. Soc. A London 458, 319 (2002); gr-qc/9911025.
  31. A. Papapetrou, Proc. R. Irish Ac. 52, 11 (1948).
  32. S. Deser and B. Tekin, Phys. Rev. D 67 084009 (2003); hep-th/0212292.
  33. L. F. Abbott and S. Deser, Nucl. Phys. B 195, 76 (1982).
For more information about this paper please visit Springer's Home Page of this paper.



Back to The Contents Page