Vacuum polarization by a scalar field in de Sitter spacetime in the presence of a global monopole

E.R. Bezerra de Mello1

Abstract

We analyze vacuum polarization effects associated with massive scalar quantum fields in a higher-dimensional de Sitter space in the presence of a global monopole. Because this analysis has been developed in pure de Sitter space, we are mainly interested on the effects induced by the presence of the global monopole. So, to achieve this objective, we calculate the corresponding Wightman function, which is expressed in an integral representation and explicitly depends on the parameters associated with the presence of the monopole and the cosmological constant. Admitting that the former is closed to unity, which corresponds to a realistic value predicted by Grand Unified Theories, it is possible to express this function as a sum of two terms: the first one corresponds to the Wightman function on the bulk where the global monopole is absent, and the second one is a contribution induced by the presence of the monopole.

References

  1. A. D. Linde, Particle Physics and Inflationary Cosmology (Harwood Academic Publishers, Chur, Switzerland 1990).
  2. A. G. Riess et al., Astrophys. J. 659, 98 (2007); D. N. Spergel et al., Astrophys. J. Suppl. Ser. 170, 377 (2007); U. Seljak, A. Slosar, and P. McDonald, J. Cosmol. Astropart. Phys. 10, 014 (2006); E. Komatsu et al., arXiv: 0803.0547.
  3. T. W. Kibble, J. Phys. A 9, 1387 (1976).
  4. A. Vilenkin and E. P. S. Shellard, Cosmic Strings and Other Topological Defects (Cambridge University Press, Cambridge, England, 1994).
  5. M. Barriola and A. Vilenkin, Phys. Rev. Lett. 63, 341 (1989).
  6. I. Olasagasti and A. Vilenkin, Phys. Rev. D 62, 044014 (2000).
  7. I. Cho and A. Vilenkin, Phys. Rev. D 68 025013 (2003).
  8. N. D. Birrell and P. C. W. Davies. Quantum Fields in Curved Space (Cambridge University Press, Cambridge, 1982).
  9. N. A. Chernikov and E.A. Tagirov, Ann. Inst. Henri Poincare 9, 109 (1968); E. A. Tagirov, Ann. Phys. 76, 561 (1973).
  10. P. Candelas and D. J. Raine, Phys. Rev. D 12, 965 (1975).
  11. J. S. Dowker and R. Critchley, Phys. Rev. D 13, 224 (1976); Phys. Rev. D 13, 3224 (1976).
  12. T. S. Bunch and P. C. W. Davies, Proc. R. Soc. London A 360, 117 (1978).
  13. N. D. Birrell, J. Phys. A 12, 337 (1979).
  14. S. G. Mamayev, Sov. Phys. J. 24, 63 (1981).
  15. A. Vilenkin and L. H. Ford, Phys. Rev. D 26, 1231 (1982).
  16. B. Allen, Nucl. Phys. B 226, 228 (1983); Ann. Phys. 161, 152 (1985).
  17. L. H. Ford, Phys. Rev. D 31, 710 (1985).
  18. K. Kirsten and J. Garriga, Phys. Rev. D 48, 567 (1993).
  19. T. Inagaki, T. Muta, and S. D. Odintsov, Progr. Theor. Phys. Suppl. 127, 93 (1997).
  20. G. Cognola, E. Elizalde, S. Nojiri, S. D. Odintsov, and S. Zerbini, J. Cosmol. Astropart. Phys. 02, 010 (2005).
  21. A. Dolgov and D. N. Pelliccia, Nucl. Phys. B 734, 208 (2006).
  22. A. A. Saharian and M. R. Setare, Phys. Let B 659, 367 (2008).
  23. S. Bellucci and A. A. Saharian, Phys. Rev. D 77, 124010 (2008).
  24. A. A. Saharian, Class. Quantum Grav. 25, 165012 (2008)
  25. E. R. Bezerra de Mello and A. A. Saharian, J. High Energy Phys. 12, 081 (2008).
  26. F. D. Mazzitelli and C. O. Lousto, Phys. Rev. D 43, 468 (1991).
  27. E. R. Bezerra de Mello, V. B. Bezerra, and N.R. Khusnutdinov, Phys. Rev. D 60, 063506 (1999).
  28. F. C. Carvalho and E.R. Bezerra de Mello, Class. Quantum Grav. 18, 1637 (2001); Class. Quantum Grav. 18, 5455 (2001).
  29. E. R. Bezerra de Mello, J. Math. Phys. 43, 1018 (2002).
  30. Xin-zhou Li and Jian-gang Hao, Phys. Rev. D 66, 107701 (2002).
  31. Bruno Bertand, Yves Brihaey and Betti Hartmann, Class. Quantum Grav. 20, 4495 (2003).
  32. M. Bordag, K. Kirsten, and S. Dowker, Commun. Math. Phys. 128, 371 (1996).
  33. E. R. Bezerra de Mello, V. B. Bezerra, and N. R. Khusnutdinov, J. Math. Phys. 42, 562 (2001).
  34. A. A. Saharian and M. R. Setare, Class. Quantum Grav. 20, 3765 (2003).
  35. A. A. Saharian and M. R. Setare, Int. J. Mod.Phys. A 19, 4301 (2004).
  36. A. A. Saharian and E. R. Bezerra de Mello, J. Phys. A 37, 3543 (2004); Int. J. Mod. Phys. A 20, 2380 (2005).
  37. E. R. Bezerra de Mello and A. A. Saharian, Class. Quantum Grav. 23, 4673 (2006).
  38. J. Spinelly and E. R. Bezerra de Mello, Class. Quantum Grav. 22, 3247 (2005).
  39. E. R. Bezerra de Mello and A. A. Saharian, J. High Energy Phys. 0610, 049 (2006).
  40. I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series and Products (Academic Press, New York, 1980).
  41. A. Erdelyi, W. Magnus, F. Oberhettinger and F. Tricomi. Higher Transcendental Functions (Bateman Project) Vol 1, ch. XI (MacGraw-Hill, New York, 1955).
  42. S. M. Christensen, Phys. Rev. D 14, 2490 (1976).
  43. S. M. Christensen, Phys. Rev. D 17, 946 (1978).
  44. G. N. Watson, A Treatise on the Theory of Bessel Functions (Cambridge, Cambridge University Press, 1944).
  45. A. P. Prudnikov, Yu.A. Brychkov, and O.I. Marichev, Integrals and Series (Gordon and Breach, New York, 1986), Vol. 2.
  46. M. R. Brown and A. C. Ottewill, Proc. R. Soc. London A389, 379 (1983); M. A. Castagnino, D. Harari and C. Nunez, J. Math. Phys. 28, 184 (1987).
  47. A. A. Saharian, Phys. Rev. D 69, 085005 (2004)
  48. D. P. Bennet and Sun Hong Rhie, Phys. Rev. Lett. 65, 1709 (1990).
  49. E. R. Bezerra de Mello and A. A. Saharian, J. High Energy Phys. 0904, 046 (2009).
  50. E. R. Bezerra de Mello and A. A. Saharian, Phys. Lett. B 642, 129 (2006).
  51. E. R. Bezerra de Mello and A. A. Saharian, Phys. Rev. D 78, 045021 (2008).
For more information about this paper please visit Springer's Home Page of this paper.



Back to The Contents Page