Rotating thin-shell wormhole from glued Kerr spacetimes

P.E. Kashargin1 and S. V. Sushkov2

Abstract

We construct a model of a rotating wormhole made by cutting and pasting two Kerr spacetimes. As a result, we obtain a rotating thin-shell wormhole with exotic matter at the throat. Two candidates for the exotic matter are considered: (i) a perfect fluid; (ii) an anisotropic fluid. We show that a perfect fluid is unable to support a rotating thin-shall wormhole. On the contrary, the anisotropic fluid with the negative energy density can be a source for such a geometry.

References

  1. M. Visser, Lorentzian Wormholes: from Einstein to Hawking (American Institute of Physics, Woodbury, 1995).
  2. A. Einstein and N. Rosen, Phys. Rev. 48, 73 (1935).
  3. C. W. Misner and J. A. Wheeler, Ann. Phys. 2, 525 (1957).
  4. M. S. Morris and K. S. Thorne, Am. J. Phys. 56, 395 (1988).
  5. D. Hochberg and M. Visser, Phys. Rev. D 56, 4745 (1997); Phys. Rev. D 58, 044021 (1998).
  6. S. V. Sushkov, Phys. Rev. D 71, 043520 (2005).
  7. F. S. N. Lobo, Phys. Rev. D 71, 084011 (2005).
  8. F. S. N. Lobo, Phys. Rev. D 73, 064028 (2006).
  9. A. Das and Sayan Kar, Class. Quantum Grav. 22, 3045 (2005).
  10. Today the list of references concerning various aspects of wormhole physics numbers hundreds of items. To find more references dated till 1995 the reader can be referred to Visser's book. A more complete list of up-to-date publications as well as an introduction into a modern state of affairs in wormhole physics and related fields can be found in a review by Lobo.
  11. F. S. N. Lobo, arXiv: 0710.4474.
  12. E. Teo, Phys. Rev. D 58, 024014 (1998).
  13. S. E. Perez Bergliaffa and K. E. Hibberd, gr-qc/0006041.
  14. P. K. F. Kuhfittig, Phys. Rev. D 67, 064015 (2003).
  15. S.-W. Kim, Nuovo Cim. 120B, 1235 (2005).
  16. V. M. Khatsymovsky, Phys.Lett. B429, 254 (1998).
  17. P. E. Kashargin and S. V. Sushkov, Grav. Cosmol. 14, 80 (2008).
  18. P. E. Kashargin and S.V. Sushkov, Phys. Rev. D 78, 064071 (2008).
  19. T. Matos and D. Nunez, Class. Quant. Grav. 23, 4485 (2006).
  20. T. Matos, Class of Einstein-Maxwell Phantom Fields: Rotating and Magnetised Wormholes, arXiv: 0902.4439.
  21. M. Visser, Phys. Rev. D 39, 3182 (1989).
  22. M. Visser, Nucl. Phys. B 328, 203 (1989).
  23. E. F. Eiroa and G. E. Romero, Gen. Rel. Grav. 36, 651 (2004).
  24. F. S. N. Lobo, P. Crawford, Class. Quant. Grav. 21, 391 (2004).
  25. E. F. Eiroa, C. Simeone, Phys. Rev. D 70, 044008 (2004).
  26. J. P. S. Lemos and F. S. N. Lobo, Phys. Rev. D 78, 044030 (2008).
  27. E. F. Eiroa and C. Simeone, Phys. Rev. D 71, 127501 (2005).
  28. M. Thibeault, C. Simeone, and E. F. Eiroa, Gen. Rel. Grav. 38, 1593 (2006).
  29. M. Richarte and C. Simeone, Phys. Rev. D 76, 087502 (2007); Erratum: ibid. 77, 089903 (2008).
  30. E. F. Eiroa, M. G. Richarte, and C. Simeone, Phys. Lett. A 373, 1 (2008); Erratum: ibid. A 373, 2399 (2009).
  31. E. F. Eiroa, Phys. Rev. D 80, 044033 (2009).
  32. C. Bejarano, E. F. Eiroa, and C. Simeone, Phys. Rev. D 75, 027501 (2007).
  33. F. Rahaman, M. Kalam, and K. A. Rahman, Acta Phys. Polon. B 40, 1575 (2009).
  34. K.A. Bronnikov and A.A. Starobinsky, Mod. Phys. Lett. A 24, 1559 (2009).
  35. R. M. Wald, General Relativity (Univ. of Chicago Press, Chicago, 1984).
  36. N. Sen, Ann. Phys. (Leipzig) 73, 365 (1924); K. Lanczos, ibid. 74, 518 (1924); G. Darmois, Memorial des Sciences Mathematiques, Fascicule XXV, Chap. V (Gauthier-Villars, Paris, 1927); W. Israel, Nuovo Cim. 44B, 1 (1966); ibid. 48B, 463(E) (1967).
  37. E. Poisson and M. Visser, Phys. Rev. D 52, 7318 (1995).
  38. M. Ishak and K. Lake, Wormholes Phys. Rev. D 65, 044011 (2002).
  39. E. F. Eiroa and G. E. Romero, Gen. Rel. Grav. 36, 651 (2004).
  40. F. S. N. Lobo and P. Crawford, Class. Quantum Grav. 21, 391 (2004).
  41. E. F. Eiroa, C. Simeone, Phys. Rev. D 76, 024021 (2007).
  42. E. F. Eiroa, Phys. Rev. D 78, 024018 (2008).
  43. S. H. Mazharimousavi, M. Halilsoy, and Z. Amirabi, Phys. Rev. D 81, 104002 (2010).
  44. P. K. F. Kuhfittig, Acta Phys. Polon. B41, 2017 (2010).
For more information about this paper please visit Springer's Home Page of this paper.



Back to The Contents Page