Possibilities and surprises of vacuum dark fluid

I. Dymnikova1

Abstract

We address the question of a unified description of dark energy and dark matter based on the spacetime symmetry which makes it possible to approach these two problems on a common ground. In this approach, a cosmological vacuum is described by a variable cosmological term whose symmetry is reduced as compared with the Einstein cosmological term, which allows the vacuum energy to be evolving and clustering. The relevant class of solutions to the Einstein equations implies the existence of compact vacuum objects generically related to dark energy: regular black holes, their remnants and self-gravitating vacuum solitons with de Sitter vacuum interior - which can be responsible for the observational effects typically related to dark matter. The mass of an objects with de Sitter interior is generically related to the vacuum dark energy and to spacetime symmetry breaking.

References

  1. E. J. Copeland, plenary talk at the "Invisible Universe International Conference", Paris, France, June-July 2009, to appear in AIP Proceedings Series (2010).
  2. E. B. Gliner and I. G. Dymnikova, Sov. Astron. Lett. 1, 93 (1975).
  3. K. A. Olive, Phys. Rep. 190, 307 (1990).
  4. A. Guth, Phys. Rev. D 23, 389 (1981).
  5. I. Dymnikova, Class. Quantum Grav. 19, 725 (2002).
  6. I. G. Dymnikova, Gen. Rel. Grav. 24, 235 (1992).
  7. I. G. Dymnikova, Phys. Lett. B 472, 33 (2000).
  8. I. Dymnikova and E. Galaktionov, Phys. Lett. B 645, 358 (2007).
  9. I. Dymnikova and B. Soltysek, Gen. Rel. Grav. 30, 1775 (1998).
  10. I. Dymnikova, Int. J. Mod. Phys. D 5, 529 (1996).
  11. E. B. Gliner, Sov. Phys. JETP 22, 378 (1966).
  12. L. D. Landau and E. M. Lifshitz, Classical Theory of Fields (Pergamon Press, 1975).
  13. K. A. Bronnikov, A. Dobosz, and I. Dymnikova, Class. Quantum Grav. 20, 3797 (2003).
  14. E. Poisson, andW. Israel, Class. Quant. Grav. 5, L201 (1988).
  15. I. G. Dymnikova, A. Dobosz, M. L. Filchenkov, and A. A. Gromov, Phys. Lett. B 506, 351 (2001).
  16. K. Bronnikov and I. Dymnikova, Class. Quantum Grav. 24, 5803 (2007).
  17. I. Dymnikova, E. Galaktionov and A. Poszwa, Vacuum solitons with de Sitter center as dark matter candidates, invited talk at the RUDN Conference, June-July 2010.
  18. L. Bergstrom, plenary talk at the "Invisible Universe International Conference", Paris, France, June-July 2009, to appear in AIP Proceedings Series (2010).
  19. I. Dymnikova, invited talk at the "Invisible Universe International Conference", Paris, France, June-July 2009, to appear in AIP Proceedings Series (2010).
  20. I. Dymnikova and M. Korpusik, Phys. Lett. B 685, 12 (2010).
  21. I. Dymnikova and M.Korpusik, Thermodynamics of regular cosmlogical black holes with de Sitter interior, invited talk at the RUDN Conference, June-July 2010.
  22. E.T. Newman, E. Cough, K. Chinnapared, A. Exton, A. Prakash, and R. Torrence, J. Math. Phys. 6, 918 (1965).
  23. B. Carter, Phys. Rev. 174, 1559 (1968).
  24. I. Dymnikova, Class. Quantum Grav. 21, 4417 (2004).
  25. R. P. Kerr and A. Schild, Am. Math. Soc. Symposium, New York (1964).
  26. M. Gurses and F. Gursey, J. Math. Phys. 16, 2385 (1975).
  27. I. Dymnikova, Phys. Lett. B 639, 368 (2006).
  28. L. D. Landau, E. M. Lifshitz, Electrodynamics of Continuous Media (Pergamon Press, 1978).
  29. I. Dymnikova, A. Sakharov, and J. Ulbricht, Minimal length scale in anihilation, CERN-PH-TH/2009-105; arXiv: 0907.0629.
  30. D. V. Ahluwalia and I. Dymnikova, Space-time as origin of neutrino oscillations, hep-ph/0305158; Int. J. Mod. Phys. D 12, 1787 (2003).
For more information about this paper please visit Springer's Home Page of this paper.



Back to The Contents Page