A topological interpretation of quantum theory and elementary particle structure
V.M. Zhuravlev^{1}
(1) Department of Theoretical Physics, Ulyanovsk State University, L. Tolstoy Str. 42, Ulyanovsk, Russia
Abstract
We present a new concept of topological and geometric interpretation of quantum mechanics. A special choice of geometric markers makes it possible to connect quantum mechanics with a topological interpretation of the electric charge and to build an electrodynamics with integer-valued point charges. The electric charge gains the status of a topological charge in the form of a geometrically distinguished region of the physical space with nonzero curvature. We introduce a topological interpretation of particles and compare it with elementary particle properties. A topological interpretation of the baryonic charge is suggested.
References
- B. A. Dubrovin, S. P. Novikov, and A. T. Fomenko, Modern Geometry. Methods of Homology Theory (Nauka, Moscow, 1984, in Russian).
- J. Kokkedee, Theory of the Quark Model (W. A. Benjamin, New York - Amsterdam, 1969).
- B. A. Dubrovin, S. P. Novikov, and A. T. Fomenko, Modern Geometry. Methods and Applications (Nauka, Moscow, 1979, in Russian).
- M. W. Hirsh, Differential Topology (Springer-Verlag, New York - Heidelberg - Berlin, 1976).
- A. Ya. Burinskii, Phys. Rev. D 67, 124024 (2003), gr-qc/0212048.
- V. V. Kassandrov, in: Space-Time Structure: Algebra and Geometry, (Ed. D. G. Pavlov et al. - Lilia Print, Moscow, 2007, p. 422), hep-th/0312278; Physics of Atomic Nuclei 72 (5), 813-827 (2009), arXiv: 0907.5425.
- M. M. Postnikov, Introduction to the Morse Theory, (Nauka, Moscow, 1971, in Russian).
- Yu. P. Rybakov and V. i. Sanyuk, Multidimensional Solitons (RUDN Press, 2001, in Russian).
- A. Sadbury, Quantum Mechanics and the Particles of Nature (Cambrige Univ. Press, Cambridge, 1986),
- J. von Neumann, Mathematical Foundations of Quantum Mechanics (Princeton University Press, 1955).
- I. S. Shapiro and M. A. Olshanetsky, in: Elementary Particles (Sixth ITEF School, 1979, 4th issue, p. 5) (in Russian).
- A. H. Wallace, Differential Topology. First Steps (Univ. of Pennsylvania, W. A. Benjamin, New York - Amsterdam, 1968).
- J. W. Milnor, Topology from the Differentiable Viewpoint (Princeton Univ., based on notes by David W. Weaver, Univ. of Virginia, Charlottesville. 1965).
- V. M. Zhuravlev, Electrodynamics with integer-valued charges and topology. Izv. Vuzov, Fiz., No. 2 (2000).
- V. M. Zhuravlev, Electrodynamics with integer-valued charges, topology, and elementary particle structure. In: Critical Technologies and Basic Problems of Condensed Matter Physics (Ulyanovsk, UlGU press, 2001, pp. 42-72). (in Russian).
- V. M. Zhuravlev, Electrodynamics with integer-valued charges and topology, Proc. Int. Conf. "Gravitation and Electromagnetism" (Minsk, BGU press, 1998, pp. 42-50).
- A. S. Shvarts, Quantum Field Theory and Topology (Nauka, Moscow, 1989) (in Russian).
- Yu. S. Vladimirov, A Relational Theory of Space-Time and Interactions. Part 1, 2 (Moscow State University Press, 1998) (in Russian).
- R. Sorkin, J. Phys. A 10, 717 (1977).
- A. D. Sakharov, in: Problems of Theoretical Physics (Nauka, Moscow, 1972, p. 242) (in Russian).
- Ch. Misner and J. Wheeler, Ann. of Phys. 2, 525 (1957)
- J. A. Wheeler, Neutrinos, Gravitation and Geometry Rend. Scuola intern. fis. "Enrico Fermi" (Verona, 1959), Corso XI, p. 67-196, ed. N. Zanicholli, (Bologna, 1960).
- C. W. Misner and J. A. Wheeler, Ann. Phys. (USA) 2, 527 (1957).
For more information about this paper please visit Springer's Home Page of this paper.
Back to The Contents Page