Scalar models for the generalized Chaplygin gas and the structure formation constraints

Julio C. Fabris, Thaisa C.C. Guio, Mahamadou Hamani Daouda and Oliver F. Piattella1


The generalized Chaplygin gas model represents an attempt to unify dark matter and dark energy. It is characterized by a fluid with the equation of state p = - A/ra. It can be obtained from a generalization of the Dirac-Born-Infeld (DBI) action for a scalar, tachyonic field. At a background level, this model gives very good results, but it suffers from many drawbacks at the perturbative level. We show that, while for background analysis it is possible to consider any value of a, the perturbative analysis must be restricted to positive values of a. This restriction can be circumvented if the origin of the generalized Chaplygin gas is traced back to a self-interacting scalar field, instead of the DBI action. But, in doing so, the predictions coming from formation of large-scale structures reduce the generalized Chaplygin gas model to a kind of quintessence model, and the unification scenario is lost if the scalar field is the canonical one. However, if the unification condition is imposed from the beginning as a prior, the model may remain competitive. More interesting results concerning the unification program are obtained if a non-canonical self-interacting scalar field, inspired by Rastall's theory of gravity, is invoked. In this case, an agreement with the background tests is possible.


  1. D. Bertacca and N. Bartolo, JCAP 0711, 026 (2007).
  2. B. Li and J. D. Barrow, Phys. Rev. D 79, 103521 (2009).
  3. M. Szydlowski and A. Kurek, AIC, BIC, Bayesian evidence and a notion of simplicity of cosmological model, arXiv: 0801.0638.
  4. A. Nicolis, R. Rattazzi and E. Trincherini, Phys. Rev. D 79, 064036 (2009).
  5. A. R. Liddle, Mon. Not. R. Astron. Soc. 377, L74 (2007).
  6. C. E. M. Batista, J. C. Fabris, and M. Hamani Daouda, Nuovo Cim. B 125, 957 (2010)
  7. J. C. Fabris, J. Sola, and I. L. Shapiro, JCAP 0702, 016 (2007).
  8. A. Shafieloo, V. Sahni, and A. A. Starobinsky, Phys. Rev. D 80, 101301 (2009).
  9. L. L. Smalley, Nuovo Cim. B 80, 42 (1984).
  10. N. Sugiyama, Astrophys. J. Suppl. 100, 281 (1995).
  11. J. M. Bardeen, J. R. Bond, N. Kaiser, and A. S. Szalay, Astrophys. J. 304, 15 (1986).
  12. V. Gorini, A. Kamenshchik, U. Moschella, V. Pasquier, and A. Starobinsky, Phys. Rev. D 72, 103518 (2005).
  13. V. Gorini, A.Y. Kamenshchik, U. Moschella and V. Pasquier, Phys. Rev. D 69, 123512 (2004).
  14. A. V. Frolov, L. Kofman, and A. A. Starobinsky, Phys. Lett. B 545, 8 (2002).
  15. P. Rastall, Phys. Rev. D 6, 3357 (1972).
  16. C. Gao, M. Kunz, A. R. Liddle, and D. Parkinson, Phys. Rev. D 81, 043520 (2010).
  17. C. E. M. Batista, J. C. Fabris, and M. Morita, Gen. Rel. Grav. 42, 839 (2010).
  18. J. C. Fabris, S. V. B. Goncalves, H. E. S. Velten, and W. Zimdahl, Phys. Rev. D 78, 103523 (2008).
  19. J. C. Fabris, H. E. S. Velten, and W. Zimdahl, Phys. Rev. D 81, 087303 (2010).
  20. V. Gorini, A. Y. Kamenshchik, U. Moschella, O. F. Piattella, and A. A. Starobinsky, JCAP 0802, 016 (2008).
  21. O. Piattella, JCAP 1003, 012 (2010).
  22. T. Barreiro, O. Bertolami and P. Torres, Phys. Rev. D 78, 043530 (2008).
  23. L. Amendola, F. Finelli, C. Burigana, and D. Carturan, JCAP 0307, 005 (2003).
  24. R. Colistete Jr. and J. C. Fabris, Class. Quantum Grav. 22, 2813 (2005).
  25. R. Colistete Jr., J. C. Fabris and S. V. B. Goncalves, Int. J. Mod. Phys. D 14, 775 (2005).
  26. R. Colistete Jr, J. C. Fabris, S. V. B. Goncalves, and P. E. de Souza, Int. J. Mod. Phys. D 13, 669 (2004).
  27. J. C. Fabris, S. V. B. Goncalves and P. E. de Souza, Gen. Rel. Grav. 34, 53 (2002).
  28. R. Jackiw, A particle field theorist's lectures on supersymmetric, non-Abelian fluid mechanics and D-branes, physics/0010042.
  29. M. C. Bento, O. Bertolami and A. A. Sen, Phys. Rev. D 66, 043507 (2002).
  30. N. Bilic, G. B. Tupper and R. D. Viollier, Phys. Lett. B 535, 17 (2002).
  31. A. Yu. Kamenshchik, U. Moschella and V. Pasquier, Phys. Lett. B 511, 265 (2001).
  32. T. Padmanabhan, Phys. Rep. 380, 235 (2003).
  33. J. Martin, Mod. Phys. Lett. A23, 1252 (2008).
  34. G. Bertone, D. Hooper and J. Silk, Phys. Rep. 405, 279 (2005).
  35. E. Komatsu et al., Seven-year Wilkinson microwave anisotropy probe (WMAP) observations: cosmological interpretation, arXiV:1001. 4538.
  36. R. R. Caldwell and M. Kamionkowski, Ann. Rev. Nucl. Part. Sci. 59, 397(2009).
For more information about this paper please visit Springer's Home Page of this paper.

Back to The Contents Page