Relativity of space-time and projective invariance of gravitation equations

L.V. Verozub1


This paper aims at discussing two issues that can have a significant impact on the foundations of the theory of gravitation: 1. The existence of relativity of the space-time geometry with respect to the properties of the reference frame used, which is a manifestation of the well-known fact of relativity of geometry of space and time with respect to properties of measuring instruments (Henri Poincare). 2. The existence of invariance of the equations of motion of test particles with respect to geodesic (projective) mappings of the metric tensor in any given coordinate system. Because of this, even in a fixed coordinate system, gravitation is described in general by a continuous set of physically equivalent metrics.


  1. Dernieres pensees (Flammarion, Pasis, 1913).
  2. L. Verozub, Ann. Phys. (Berlin) 17, 28 (2008).
  3. L. Landau and E. Lifshitz, Fluid Mechanics (Pergamon, Oxford, 1987).
  4. V. Rodichev, Theory of Gravity in Orthogonal Frame, (Nauka, Moscow, 1974, in Russian).
  5. W. Thirring, Ann. Phys. 16, 96 (1961).
  6. Ch. Misner, K. Thorne, and J. Wheeler, Gravitation (San Francisco, Freeman and Comp.) (1973).
  7. L. Verozub, Int. Journ. Mod. Phys. D 17, 337 (2008).
  8. J. Monaghan and D. Rice, Month. Not. Roy. Astron. Soc. 328, 381 (2001).
  9. L. Eisenhart, Riemannian geometry (Princeton Univ. Press, 1950).
  10. J. Mikes, V. Kiosak, and A. Vansurova, Geodesic Mappings (Olomouc, 2008)
  11. A. Petrov, Einstein Spaces (New-York-London, Pergamon Press, 1969).
  12. L. Verozub, Phys. Lett. A 156, 404 (1991).
  13. L. Verozub, Astr. Nachr. 317, 107 (1996).
  14. L. Verozub and A. Kochetov, Astr. Nachr. 322, 143 (2001).
  15. L. Verozub, Astr. Nachr. 327, 355 (2006).
  16. L. Verozub and A. Kochetov, Grav. Cosmol. 6, 246 (2000).
  17. H. Treder, Gravitationstheorie und Aquivalenzprinzip (Berlin, Akademie-Verlag, 1971).
For more information about this paper please visit Springer's Home Page of this paper.

Back to The Contents Page