On black brane solutions and their fluid analogues

V.D. Ivashchuk and V.N. Melnikov1

Abstract

We review spherically symmetric solutions with a horizon in two models: (i) with scalar fields and fields of forms, and (ii) with a multi-component anisotropic fluid. The metrics of the solutions are defined on a manifold that contains a product of n - 1 Ricci-flat ïnternal" spaces. The solutions are governed by functions Hs obeying nonlinear differential equations with certain boundary conditions. Simulation of black-brane solutions is considered, and the Hawking temperature is calculated. For the fluid solution, the post-Newtonian parameters b and g corresponding to the 4-dimensional section of the metric are found.

References

  1. K. A. Bronnikov, V. D. Ivashchuk, and V. N. Melnikov, Grav. Cosmol. 3, 203-212 (1997); gr-qc/9710054.
  2. V. D. Ivashchuk and V. N. Melnikov, J. Math. Phys. 39, 2866-2889 (1998); hep-th/9708157.
  3. K.A. Bronnikov, Grav. Cosmol. 4, 49 (1998); hep-th/9710207.
  4. V. D. Ivashchuk and V. N. Melnikov, In: Lecture Notes in Physics, Vol. 537, Mathematical and Quantum Aspects of Relativity and Cosmology, Proceedings of the Second Samos Meeting on Cosmology, Geometry and Relativity held at Pythagoreon, Samos, Greece, 1998, eds: S. Cotsakis and G. W. Gibbons, Berlin, Springer, pp. 214-247, 2000; gr-qc/9901001.
  5. S. Cotsakis, V. D. Ivashchuk and V. N. Melnikov, Grav. Cosmol. 5, 52-57 (1999); gr-qc/9902148.
  6. V. D. Ivashchuk and V. N. Melnikov, Grav. Cosmol. 5, 313-318 (1999); gr-qc/0002085.
  7. V. D. Ivashchuk and V. N. Melnikov, Grav. Cosmol. 6, 27-40 (2000); hep-th/9910041.
  8. V. D. Ivashchuk and V. N. Melnikov, Class. Quantum Grav. 17, 2073-2092 (2000); math-ph/0002048.
  9. M. A. Grebeniuk, V. D. Ivashchuk, and S.-W. Kim, J. Math. Phys. 43, 6016-6023 (2002); hep-th/0111219.
  10. M. A. Grebeniuk, V. D. Ivashchuk, and V. N. Melnikov, Phys. Lett. B 543 98-106 (2002); hep-th/0208083.
  11. V. D. Ivashchuk and V. N. Melnikov, Class. Quantum Grav. 18, R87-R152 (2001); hep-th/0110274.
  12. V. D. Ivashchuk, V. N. Melnikov, and A. B. Selivanov, Grav. Cosmol. 7 No. 4 (12), (2001); gr-qc/0205103.
  13. V. D. Ivashchuk, V. N. Melnikov, and A. B. Selivanov, Grav. Cosmol. 9, 50-54 (2003); hep-th/0211247.
  14. H. Dehnen, V. D. Ivashchuk and V. N. Melnikov, Grav. Cosmol. 9, 153-158 (2003); gr-qc/0211049.
  15. H. Dehnen and V. D. Ivashchuk, J. Math. Phys. 45, 4726-4736 (2004); gr-qc/0310043.
  16. M. Cvetic and A. Tseytlin, Nucl. Phys. B 478, 181-198 (1996); hep-th/9606033.
  17. I. Ya. Aref'eva, M. G. Ivanov, and I. V. Volovich, Phys. Lett. B 406, 44-48 (1997); hep-th/9702079.
  18. N. Ohta, Phys. Lett. B 403, 218-224 (1997); hep-th/9702164.
  19. V. D. Ivashchuk and S.-W. Kim, J. Math. Phys. 41 444-460 (2000); hep-th/9907019.
  20. V. D. Ivashchuk and V. N. Melnikov, Int. J. Mod. Phys. D 3, 795-811 (1994); gr-qc/9403063.
  21. V. R. Gavrilov, V. D. Ivashchuk, and V. N. Melnikov, J. Math. Phys. 36, 5829-5847 (1995).
  22. V. D. Ivashchuk, V. N. Melnikov, and A.I. Zhuk, Nuovo Cim. B 104, 575-581 (1989).
  23. J. W. York, Phys. Rev. D 31, 775 (1985).
  24. J. Fuchs and C. Schweigert, Symmetries, Lie Algebras and Representations. A Graduate Course for Physicists (Cambridge University Press, Cambridge, 1997).
  25. H. Lu, J. Maharana, S. Mukherji, and C.N. Pope, Phys. Rev. D 57, 2219-2229 (1997); hep-th/9707182.
  26. V. D. Ivashchuk, Phys. Lett. B 693, 399-403 (2010); arXiv: 1001.4053.
For more information about this paper please visit Springer's Home Page of this paper.



Back to The Contents Page