The use of symbolic calculations in post-Riemannian and multidimensional theories of gravity

O.V. Babourova1, R.S. Kostkin2, B.N. Frolov3

Abstract

We have developed new methods of using symbolic computer calculations for four- and higher-dimensional, geometrically generalized spaces. In particular,we work with differential identities in order to check the variational field equations of a conformal theory of gravity with a scalar field in Weyl-Cartan space. To simplify the navigation, we have worked out a graphic user interface, making it possible to solve problems of a post-Riemannian theory of gravity in Weyl-Cartan space, as well as those of the Kaluza-Klein five-dimensional unified theory of gravity and electromagnetism, in particular, in the external form formalism.

References

  1. O. V. Babourova and B. N. Frolov, Class. Quantum Grav. 20, 1423 (2003); gr-qc/0209077.
  2. V. G. Krechet and D.V. Sadovnikov, Grav. Cosmol. 60, 337 (2009).
  3. K. A. Bronnikov and J. P. S. Lemos, Phys. Rev. D 79, 104089 (2009); ArXiv: 0903.5173.
  4. K. A. Bronnikov, S. G. Rubin, and I. V. Svadkovsky, Phys. Rev. D 81, 084010 (2010); ArXiv: 0912.4862.
  5. A. S. Kiselev, V. G. Krechet, and B. N. Frolov, Grav. Cosmol. 16, 283 (2010).
  6. O. V. Babourova and B. N. Frolov, Mod. Phys. Lett. A 12, 2943 (1998); gr-qc/9708006.
  7. H. H. Soleng, in: Relativity and Scientific Computing - Computer Algebra, Numerics, Visualization (Springer, Berlin, 1996), p. 210-230.
  8. H. H. Soleng, Tensors in Physics (Ad Infinitum, Oslo, 2007).
  9. O. V. Babourova, R. S. Kostkin, and B. N. Frolov, Grav. Cosmol. 15, 302 (2009).
  10. B. N. Frolov, The Poincare Gauge Theory of Gravity (MPGU, Prometei, Moscow, 2003).
  11. O. V. Babourova, B. N. Frolov, and V. Ch. Zhukovsky, Phys. Rev. D 74, 0640126 (2006); gr-qc/0508088.
  12. O. V. Babourova, B. N. Frolov, and V. Ch. Zhukovsky, Theor. Math. Phys. 157, 1420 (2008).
  13. O. V. Babourova, B. N. Frolov, and V. Ch. Zhukovsky, Grav. Cosmol. 15, 13 (2009).
  14. P. A. M. Dirac, Proc. R. Soc. A333, 403 (1973).
  15. O. V. Babourova, B. N. Frolov, and R. S. Kostkin, Dirac's scalar field as an effective component of the dark energy and an evolution of the cosmological constant, ArXiv: 1102.2901.
  16. V. V. Zhytnikov, GRG. Computer Algebra System for Differential Geometry, Gravity and Field Theory, Version 3.1 (Moscow, 1991); Version 3.2, URL: ftp://ftp.maths.qmw.ac.uk/pub/grg3.2.
For more information about this paper please visit Springer's Home Page of this paper.



Back to The Contents Page