On a cosmological invariant as an observational probe in the early universe

Debashis Gangopadhyay1 and Somnath Mukherjee2

Abstract

k-essence scalar field models are usually taken to have Lagrangians of the form L = -V(f)F(X) with F some general function of X = mfmf. Under certain conditions, this Lagrangian can take the form of that of an oscillator with time-dependent frequency. The Ermakov invariant for a time-dependent oscillator in a cosmological scenario then leads to an invariant quadratic form involving the Hubble parameter and a logarithm of the scale factor. In principle, this invariant can lead to further observational probes for the early Universe. Moreover, if such an invariant can be observationally verified, then the presence of dark energy will also be indirectly confirmed.

References

  1. V. P. Ermakov, Univ. Izv. Kiev 20, 1 (1880).
  2. H. R. Lewis, Phys. Rev. Lett. 18, 510 (1967).
  3. H. R. Lewis, Jour. Math. Phys. 9, 1976 (1968).
  4. H. R. Lewis and W. B. Riesenfeld, J. Math. Phys. 10, 1458 (1969).
  5. W. E. Milne, Phys. Rev. 35, 863 (1930).
  6. E. Pinney, Proc. Am. Math. Soc. 1, 681 (1950).
  7. D. Gangopadhyay and S. Mukherjee, Phys. Lett. B 665, 121 (2008).
  8. D. Gangopadhyay, Grav. Cosmol. 16, 231 (2010).
  9. R. J. Scherrer, Phys. Rev. Lett. 93, 011301 (2004).
  10. C. Armendariz-Picon, T. Damour and V. Mukhanov, Phys. Lett. B458, 209 (1999).
  11. J. Garriga and V. F. Mukhanov, Phys. Lett. B458, 219 (1999).
  12. T. Chiba, T. Okabe and M. Yamaguchi, Phys. Rev. D 62, 023511 (2000).
  13. C. Armendariz-Picon, V. Mukhanov and P. J. Steinhardt, Phys. Rev. Lett. 85, 4438 (2000).
  14. C. Armendariz-Picon, V. Mukhanov and P. J. Steinhardt, Phys. Rev. D 63, 103510 (2001).
  15. T. Chiba, Phys. Rev. D 66, 063514 (2002).
  16. L. P. Chimento, Phys. Rev. D 69, 123517 (2004).
  17. V. Sahni, Lect. Notes Phys. 653, 141 (2004).
  18. T. Padmanabhan, AIP Conf. Proc. 843, 111 (2006).
  19. E. J. Copeland, M. Sami and S. Tsujikawa, Int. J. Mod. Phys. D 15, 1753 (2006).
  20. M. Malquarti, E. J. Copeland, A. R. Liddle and M. Trodden, Phys. Rev. D 67, 123503 (2003).
  21. M. Malquarti, E. J. Copeland, A. R. Liddle, Phys. Rev. D 68, 023512 (2003).
  22. L. Mingzhe and X. Zhang, Phys. Lett. B 573, 20 (2003).
  23. J. M. Aguirregabiria, L. P. Chimento, and R. Lazkoz, Phys. Rev. D 70, 023509 (2004).
  24. L. P. Chimento and R. Lazkoz, Phys. Rev. D 71, 023505 (2005).
  25. L. P. Chimento, M. Forte and R. Lazkoz, Mod. Phys. Lett. A 20, 2075 (2005).
  26. R. Lazkoz, Int. J. Mod. Phys. D 14, 635 (2005).
  27. H. Kim, Phys. Lett. B 606, 223 (2005).
  28. J. M. Aguirregabiria, L. P. Chimento, and R. Lazkoz, Phys. Lett. B 631, 93 (2005).
  29. H. Wei and R. G. Cai, Phys. Rev. D 71, 043504 (2005).
  30. C. Armendariz-Picon and E. A. Lim, JCAP 0508, 7 (2005).
  31. L. R. Abramo and N. Pinto-Neto, Phys. Rev. D 73, 063522 (2006).
  32. A. D. Rendall, Class. Quantum Grav. 23, 1557 (2006).
  33. V. Mukhanov, Physical Foundations of Cosmology (Cambridge University Press, 2005), pp. 236-238.
  34. M. V. Berry, Proc. R. Soc. A 392, 45 (1984).
  35. M. V. Berry, J. Phys. A 18, 15 (1985).
  36. D. A. Morales, J. Phys. A 21, L889 (1988).
  37. P. G. L. Leach, J. Phys. A 23, 2695 (1990).
  38. Abhijit Bandyopadhyay, Debashis Gangopadhyay and Arka Moulik, The k-essence scalar field in the context of Supernova Ia Observations, arXiv: 1102.3554.
  39. S. Perlmutter et al., Astron. Astrophys. 447, 31 (2006).
  40. A. G. Riess et al., Astrophys. J. 659, 98 (2007).
  41. W. M. Wood-Vasey et al., Astrophys. J. 666, 694 (2007).
  42. M. Hicken et al., Astrophys. J. 700, 1097 (2009).
  43. M. Kowalski et al., Astrophys. J. 686, 749 (2008).
For more information about this paper please visit Springer's Home Page of this paper.



Back to The Contents Page