Electromagnetic fields in Kerr-Schild space-times

V.V. Kassandrov1


Making use of twistor structures and the Kerr theorem for shear-free null geodesic congruences, an infinite family of electromagnetic fields satisfying the homogeneous Maxwell equations in flat Minkowski and the associated curved Kerr-Schild backgrounds is determined for any such congruence in a purely algebraic way. The simplest examples of invariant axisymmetric Maxwell fields are presented.


  1. A. F. Ran ada, J. Phys. A: Math. Gen. 25, 1621 (1992); A. F. Ran ada and J. L. Trueba, Phys. Lett., A202, 337 (1995).
  2. R. M. Kiehn, Int. J. Theor. Phys., 5, 1779 (1991); Electromagnetic waves in the vacuum with torsion and spin, physics/9802033.
  3. V. V. Kassandrov and J. A. Rizkallah, Twistor and "weak" gauge structures in the framework of quaternionic analysis", gr-qc/ 0012109; V. V. Kassandrov, in: Space-time Structure. Algebra and Geometry, (ed. D.G. Pavlov et al., Lilia-Print, Moscow, 2007, p. 441; arXiv: 0710.2895.
  4. V. V. Kassandrov and V. N. Trishin, Grav. Cosmol. 5, 272 (1999); gr-qc/ 0007026.
  5. V. V. Kassandrov, in: Has the Last Word Been Said on Classical Electrodynamics? (ed. A. Chubykalo et al., Rinton Press, 2004, p. 42); physics/0308045.
  6. V. V. Kassandrov, Grav. Cosmol. 3, 216 (1995); gr-qc/0007026.
  7. R. Penrose and W. Rindler, Spinors and Space-Time. Vol. II (Cambridge Univ. Press, Cambridge, 1986).
  8. V. V. Kassandrov and J. A. Rizcallah, in: Recent Problems in Field Theory (ed. A.V. Aminova, Kasan Univ. Press, Kasan, 1998, p. 176); gr-qc/9809078.
  9. R. W. Lind and E. T. Newman, J. Math. Phys. 15, 1103 (1974); E. T. Newman, Phys. Rev.D 65, 104005 (2002), gr-qc/0201055.
  10. A. Ya. Burinskii, J. Phys. A: Math. Theor. 41, 164069 (2008), arXiv: 0710.4249; 'Aligned electromagnetic exitations of the Kerr-Schild solutions, gr-qc/0612186.
  11. V. V. Kassandrov, Grav. Cosmol. 15, 213 (2009).
For more information about this paper please visit Springer's Home Page of this paper.

Back to The Contents Page